Tensorflow2.3.0代码规范
更新时间:2023-01-18
Tensorflow 2.3.0代码规范
基于Tensorflow2.3.0框架的MNIST图像分类,训练数据集tf_train_data2.zip点击这里下载。
如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。
tensorflow2.3_autosearch.py示例代码
# -*- coding:utf-8 -*-
""" tensorflow2 train demo """
import tensorflow as tf
import os
import numpy as np
import time
import argparse
from rudder_autosearch.sdk.amaas_tools import AMaasTools
def parse_arg():
"""parse arguments"""
parser = argparse.ArgumentParser(description='tensorflow2.3 mnist Example')
parser.add_argument('--train_dir', type=str, default='./train_data',
help='input data dir for training (default: ./train_data)')
parser.add_argument('--test_dir', type=str, default='./test_data',
help='input data dir for test (default: ./test_data)')
parser.add_argument('--output_dir', type=str, default='./output',
help='output dir for auto_search job (default: ./output)')
parser.add_argument('--job_id', type=str, default="job-1234",
help='auto_search job id (default: "job-1234")')
parser.add_argument('--trial_id', type=str, default="0-0",
help='auto_search id of a single trial (default: "0-0")')
parser.add_argument('--metric', type=str, default="acc",
help='evaluation metric of the model')
parser.add_argument('--data_sampling_scale', type=float, default=1.0,
help='sampling ratio of the data (default: 1.0)')
parser.add_argument('--batch_size', type=int, default=100,
help='number of images input in an iteration (default: 100)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate of the training (default: 0.001)')
parser.add_argument('--epoch', type=int, default=5,
help='number of epochs to train (default: 5)')
args = parser.parse_args()
args.output_dir = os.path.join(args.output_dir, args.job_id, args.trial_id)
if not os.path.exists(args.output_dir):
os.makedirs(args.output_dir)
print("job_id: {}, trial_id: {}".format(args.job_id, args.trial_id))
return args
def load_data(data_sampling_scale):
""" load data """
mnist = tf.keras.datasets.mnist
work_path = os.getcwd()
(x_train, y_train), (x_test, y_test) = mnist.load_data('%s/train_data/mnist.npz' % work_path)
# sample training data
np.random.seed(0)
sample_data_num = int(data_sampling_scale * len(x_train))
idx = np.arange(len(x_train))
np.random.shuffle(idx)
x_train, y_train = x_train[0:sample_data_num], y_train[0:sample_data_num]
x_train, x_test = x_train / 255.0, x_test / 255.0
return (x_train, x_test), (y_train, y_test)
def Model(learning_rate):
"""Model"""
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer=tf.keras.optimizers.Adam(learning_rate),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
return model
def evaluate(model, x_test, y_test):
"""evaluate"""
loss, acc = model.evaluate(x_test, y_test, verbose=2)
print("accuracy: %f" % acc)
return acc
def report_final(args, metric):
"""report_final_result"""
# 结果上报sdk
amaas_tools = AMaasTools(args.job_id, args.trial_id)
metric_dict = {args.metric: metric}
for i in range(3):
flag, ret_msg = amaas_tools.report_final_result(metric=metric_dict,
export_model_path=args.output_dir,
checkpoint_path="")
print("End Report, metric:{}, ret_msg:{}".format(metric, ret_msg))
if flag:
break
time.sleep(1)
assert flag, "Report final result to manager failed! Please check whether manager'address or manager'status " \
"is ok! "
def main():
"""main"""
# 获取参数
args = parse_arg()
# 加载数据集
(x_train, x_test), (y_train, y_test) = load_data(args.data_sampling_scale)
# 模型定义
model = Model(args.lr)
# 模型训练
model.fit(x_train, y_train, epochs=args.epoch, batch_size=args.batch_size)
# 模型保存
model.save(args.output_dir)
# 模型评估
acc = evaluate(model, x_test, y_test)
# 上报结果
report_final(args, metric=acc)
if __name__ == '__main__':
main()
示例代码对应的yaml配置如下,请保持格式一致
pwo_search_demo.yml示例内容
#搜索算法参数
search_strategy:
algo: PARTICLE_SEARCH #搜索策略:粒子群算法
params:
population_num: 8 #种群个体数量 | [1,10] int类型
round: 10 #迭代轮数 |[5,50] int类型
inertia_weight: 0.5 # 惯性权重 |(0,1] float类型
global_acceleration: 1.5 #全局加速度 |(0,4] float类型
local_acceleration: 1.5 #个体加速度 |(0,4] float类型
#单次训练时数据的采样比例,单位%
data_sampling_scale: 100 #|(0,100] int类型
#评价指标参数
metrics:
name: acc #评价指标 | 任意字符串 str类型
goal: MAXIMIZE #最大值/最小值 | str类型 MAXIMIZE or MINIMIZE 必须为这两个之一(也即支持大写)
expected_value: 100 #早停标准值,评价指标超过该值则结束整个超参搜索,单位% |无限制 int类型
#搜索参数空间
search_space:
batch_size:
htype: choice
value: [100, 200, 300, 400, 500, 600]
lr:
htype: loguniform
value: [0.0001, 0.9]
epoch:
htype: choice
value: [5, 10, 12]