TensorFlow 1.13.2代码规范
更新时间:2023-01-18
TensorFlow 1.13.2代码规范
基于TensorFlow1.13.2框架的MNIST图像分类,训练数据集tf_train_data2.zip点击这里下载。
如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。
tensorflow1.13.2_autosearch.py示例代码
# -*- coding:utf-8 -*-
""" tensorflow1 train demo """
import os
import tensorflow as tf
import numpy as np
import time
from tensorflow import keras
import os
import argparse
from rudder_autosearch.sdk.amaas_tools import AMaasTools
tf.logging.set_verbosity(tf.logging.INFO)
def parse_arg():
"""parse arguments"""
parser = argparse.ArgumentParser(description='tensorflow1.13.2 mnist Example')
parser.add_argument('--train_dir', type=str, default='./train_data',
help='input data dir for training (default: ./train_data)')
parser.add_argument('--test_dir', type=str, default='./test_data',
help='input data dir for test (default: ./test_data)')
parser.add_argument('--output_dir', type=str, default='./output',
help='output dir for auto_search job (default: ./output)')
parser.add_argument('--job_id', type=str, default="job-1234",
help='auto_search job id (default: "job-1234")')
parser.add_argument('--trial_id', type=str, default="0-0",
help='auto_search id of a single trial (default: "0-0")')
parser.add_argument('--metric', type=str, default="acc",
help='evaluation metric of the model')
parser.add_argument('--data_sampling_scale', type=float, default=1.0,
help='sampling ratio of the data (default: 1.0)')
parser.add_argument('--batch_size', type=int, default=100,
help='number of images input in an iteration (default: 100)')
parser.add_argument('--lr', type=float, default=0.001,
help='learning rate of the training (default: 0.001)')
parser.add_argument('--last_step', type=int, default=20000,
help='number of steps to train (default: 20000)')
args = parser.parse_args()
args.output_dir = os.path.join(args.output_dir, args.job_id, args.trial_id)
print("job_id: {}, trial_id: {}".format(args.job_id, args.trial_id))
return args
def load_data(data_sampling_scale):
""" load data """
work_path = os.getcwd()
(x_train, y_train), (x_test, y_test) = \
keras.datasets.mnist.load_data('%s/train_data/mnist.npz' % work_path)
# sample training data
np.random.seed(0)
sample_data_num = int(data_sampling_scale * len(x_train))
idx = np.arange(len(x_train))
np.random.shuffle(idx)
x_train, y_train = x_train[0:sample_data_num], y_train[0:sample_data_num]
# The shape of downloaded data is (-1, 28, 28), hence we need to reshape it
# into (-1, 784) to feed into our network. Also, need to normalize the
# features between 0 and 1.
x_train = np.reshape(x_train, (-1, 784)) / 255.0
x_test = np.reshape(x_test, (-1, 784)) / 255.0
return (x_train, x_test), (y_train, y_test)
def train_input_generator(x_train, y_train, batch_size=64):
"""train_input_generator"""
assert len(x_train) == len(y_train)
while True:
p = np.random.permutation(len(x_train))
x_train, y_train = x_train[p], y_train[p]
index = 0
while index <= len(x_train) - batch_size:
yield x_train[index:index + batch_size], \
y_train[index:index + batch_size],
index += batch_size
def conv_model(feature, target, mode):
"""2-layer convolution model."""
# Convert the target to a one-hot tensor of shape (batch_size, 10) and
# with a on-value of 1 for each one-hot vector of length 10.
target = tf.one_hot(tf.cast(target, tf.int32), 10, 1, 0)
# Reshape feature to 4d tensor with 2nd and 3rd dimensions being
# image width and height final dimension being the number of color channels.
feature = tf.reshape(feature, [-1, 28, 28, 1])
# First conv layer will compute 32 features for each 5x5 patch
with tf.variable_scope('conv_layer1'):
h_conv1 = tf.layers.conv2d(feature, 32, kernel_size=[5, 5],
activation=tf.nn.relu, padding="SAME")
h_pool1 = tf.nn.max_pool(
h_conv1, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Second conv layer will compute 64 features for each 5x5 patch.
with tf.variable_scope('conv_layer2'):
h_conv2 = tf.layers.conv2d(h_pool1, 64, kernel_size=[5, 5],
activation=tf.nn.relu, padding="SAME")
h_pool2 = tf.nn.max_pool(
h_conv2, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# reshape tensor into a batch of vectors
h_pool2_flat = tf.reshape(h_pool2, [-1, 7 * 7 * 64])
# Densely connected layer with 1024 neurons.
h_fc1 = tf.layers.dropout(
tf.layers.dense(h_pool2_flat, 1024, activation=tf.nn.relu),
rate=0.5, training=mode == tf.estimator.ModeKeys.TRAIN)
# Compute logits (1 per class) and compute loss.
logits = tf.layers.dense(h_fc1, 10, activation=None)
loss = tf.losses.softmax_cross_entropy(target, logits)
return tf.argmax(logits, 1), loss
class Model():
def __init__(self, args, train_test_data):
self.args = args
self.create_model()
(self.x_train, self.x_test), (self.y_train, self.y_test) = train_test_data
def create_model(self):
"""create_model"""
with tf.name_scope('input'):
self.image = tf.placeholder(tf.float32, [None, 784], name='image')
self.label = tf.placeholder(tf.float32, [None], name='label')
self.predict, self.loss = conv_model(self.image, self.label, tf.estimator.ModeKeys.TRAIN)
opt = tf.train.RMSPropOptimizer(self.args.lr)
self.global_step = tf.train.get_or_create_global_step()
self.train_op = opt.minimize(self.loss, global_step=self.global_step)
def run_train(self):
"""run_train"""
hooks = [
tf.train.StopAtStepHook(last_step=self.args.last_step),
tf.train.LoggingTensorHook(tensors={'step': self.global_step, 'loss': self.loss},
every_n_iter=10),
]
# Horovod: pin GPU to be used to process local rank (one GPU per process)
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.gpu_options.visible_device_list = '0'
# Horovod: save checkpoints only on worker 0 to prevent other workers from
# corrupting them.
self.checkpoint_dir = '/checkpoints'
os.system("rm -rf " + self.checkpoint_dir)
training_batch_generator = train_input_generator(self.x_train,
self.y_train, batch_size=self.args.batch_size)
# The MonitoredTrainingSession takes care of session initialization,
# restoring from a checkpoint, saving to a checkpoint, and closing when done
# or an error occurs.
with tf.train.MonitoredTrainingSession(checkpoint_dir=self.checkpoint_dir,
hooks=hooks,
config=config) as mon_sess:
while not mon_sess.should_stop():
# Run a training step synchronously.
image_, label_ = next(training_batch_generator)
mon_sess.run(self.train_op, feed_dict={self.image: image_, self.label: label_})
def save_model(self):
"""save_model"""
saver = tf.train.Saver()
inputs_classes = tf.saved_model.utils.build_tensor_info(self.image)
outputs_classes = tf.saved_model.utils.build_tensor_info(self.predict)
signature = (tf.saved_model.signature_def_utils.build_signature_def(
inputs={tf.saved_model.signature_constants.CLASSIFY_INPUTS: inputs_classes},
outputs={tf.saved_model.signature_constants.CLASSIFY_OUTPUT_CLASSES: outputs_classes},
method_name=tf.saved_model.signature_constants.CLASSIFY_METHOD_NAME))
with tf.Session() as sess:
sess.run([tf.local_variables_initializer(), tf.tables_initializer()])
saver.restore(sess, tf.train.latest_checkpoint(self.checkpoint_dir))
model_output_dir = self.args.output_dir
builder = tf.saved_model.builder.SavedModelBuilder(model_output_dir)
legacy_init_op = tf.group(tf.tables_initializer(), name='legacy_init_op')
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={'predict_images': signature},
legacy_init_op=legacy_init_op)
builder.save()
def evaluate(self):
"""evaluate"""
with tf.Session() as sess:
sess.run([tf.local_variables_initializer(), tf.tables_initializer()])
saver = tf.train.Saver()
saver.restore(sess, tf.train.latest_checkpoint(self.checkpoint_dir))
y_pred = sess.run(self.predict, feed_dict={self.image: self.x_test})
self.acc = sum(y_pred == self.y_test) / len(y_pred)
print("accuracy: %f" % self.acc)
return self.acc
def report_final(args, metric):
"""report_final_result"""
# 结果上报sdk
amaas_tools = AMaasTools(args.job_id, args.trial_id)
metric_dict = {args.metric: metric}
for i in range(3):
flag, ret_msg = amaas_tools.report_final_result(metric=metric_dict,
export_model_path=args.output_dir,
checkpoint_path="")
print("End Report, metric:{}, ret_msg:{}".format(metric, ret_msg))
if flag:
break
time.sleep(1)
assert flag, "Report final result to manager failed! Please check whether manager'address or manager'status " \
"is ok! "
def main(_):
"""main"""
# 获取参数
args = parse_arg()
# 加载数据集
train_test_data = load_data(args.data_sampling_scale)
# 模型定义
model = Model(args, train_test_data)
# 模型训练
model.run_train()
# 模型保存
model.save_model()
# 模型评估
acc = model.evaluate()
# 上报结果
report_final(args, metric=acc)
if __name__ == "__main__":
tf.app.run()
示例代码对应的yaml配置如下,请保持格式一致
tpe_search_demo.yml示例内容
#搜索算法参数
search_strategy:
algo: TPE_SEARCH #搜索策略:贝叶斯搜索
params:
n_startup_points: 5 # 初始点数量 |[1,20] int类型
max_concurrent: 5 #最大并发量 |[1,20] int类型
#单次训练时数据的采样比例,单位%
data_sampling_scale: 100 #|(0,100] int类型
#最大搜索次数
max_trial_num: 10 # |>0 int类型
#评价指标参数
metrics:
name: acc #评价指标 | 任意字符串 str类型
goal: MAXIMIZE #最大值/最小值 | str类型 MAXIMIZE or MINIMIZE 必须为这两个之一(也即支持大写)
expected_value: 100 #早停标准值,评价指标超过该值则结束整个超参搜索,单位% |无限制 int类型
#搜索参数空间
search_space:
batch_size:
htype: choice
value: [100, 200, 300, 400, 500, 600]
lr:
htype: loguniform
value: [0.0001, 0.1]
last_step:
htype: choice
value: [20000, 50000, 100000]