部署mnist手写数字识别模型
更新时间:2022-12-07
本文介绍如何将一个mnist手写字模型通过BIE下发至边缘节点。
前提条件
- 有一个可用的测试边缘节点设备,本案例使用一个2核8G的BCC云服务器作为测试设备。
- 按照快速入门教程,将测试边缘节点连接云端。
- 该模型是CPU模型,如果运行中报Docker Runtime错误,可以查看边缘节点Docker Runtime,如果是
nvidia
,尝试修改为runc
试一下。 - 该模型使用的tensorflow版本依赖avx指令,通过命令
more /proc/cpuinfo | grep flags
可查看cpu支持的指令集。无该指令的边缘设备将无法运行该模型,运行报错如下:
操作指南
导入配置项
- 进入配置管理
- 点击导入配置项
- 选择导入文件配置项-tfmnist.json
- 导入完毕以后,将增加一个名为 tfmnist 的配置项。
- 在内网环境下,可以先下载模型文件:tf_mnist.zip,再上传至内网的对象存储,最后修改配置项的下载地址为内网地址。
导入应用
- 进入应用部署
- 点击导入应用
- 选择导入文件应用-tf-mnist-app.json
- 导入完毕以后,将增加一个名为 tf-mnist-app 的应用。
- 在内网环境下,可以先下载镜像:
registry.baidubce.com/aiot/tensorflow-serving:1.15-gpu-4.2
,再上传至内网的镜像仓库,最后修改应用的镜像地址为内网地址。
设置目标节点
在tf-mnist-app的应用详情界面,设置目标节点,如下图所示,设置标签以后,应用自动部署。部署完毕以后,部署状态为已部署
验证边缘AI服务
准备测试数据
通过SSH登录到边缘节点,新建一个test.json文件,在测试文件当中填入测试数据,可以通过以下命令完成。
# 创建test.json
sudo vim test.json
# 输入以下内容
{"instances": [{"images": [0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.3294117748737335, 0.7254902124404907, 0.6235294342041016, 0.5921568870544434, 0.2352941334247589, 0.1411764770746231, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.8705883026123047, 0.9960784912109375, 0.9960784912109375, 0.9960784912109375, 0.9960784912109375, 0.9450981020927429, 0.7764706611633301, 0.7764706611633301, 0.7764706611633301, 0.7764706611633301, 0.7764706611633301, 0.7764706611633301, 0.7764706611633301, 0.7764706611633301, 0.6666666865348816, 0.2039215862751007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.26274511218070984, 0.44705885648727417, 0.2823529541492462, 0.44705885648727417, 0.6392157077789307, 0.8901961445808411, 0.9960784912109375, 0.8823530077934265, 0.9960784912109375, 0.9960784912109375, 0.9960784912109375, 0.9803922176361084, 0.8980392813682556, 0.9960784912109375, 0.9960784912109375, 0.5490196347236633, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.06666667014360428, 0.25882354378700256, 0.05490196496248245, 0.26274511218070984, 0.26274511218070984, 0.26274511218070984, 0.23137256503105164, 0.08235294371843338, 0.9254902601242065, 0.9960784912109375, 0.41568630933761597, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.32549020648002625, 0.9921569228172302, 0.8196079134941101, 0.07058823853731155, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.08627451211214066, 0.9137255549430847, 1.0, 0.32549020648002625, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5058823823928833, 0.9960784912109375, 0.9333333969116211, 0.1725490242242813, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.23137256503105164, 0.9764706492424011, 0.9960784912109375, 0.24313727021217346, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5215686559677124, 0.9960784912109375, 0.7333333492279053, 0.019607843831181526, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.03529411926865578, 0.803921639919281, 0.9725490808486938, 0.22745099663734436, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4941176772117615, 0.9960784912109375, 0.7137255072593689, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.29411765933036804, 0.9843137860298157, 0.9411765336990356, 0.22352942824363708, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.07450980693101883, 0.8666667342185974, 0.9960784912109375, 0.6509804129600525, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.011764707043766975, 0.7960785031318665, 0.9960784912109375, 0.8588235974311829, 0.13725490868091583, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.14901961386203766, 0.9960784912109375, 0.9960784912109375, 0.3019607961177826, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.12156863510608673, 0.8784314393997192, 0.9960784912109375, 0.45098042488098145, 0.003921568859368563, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.5215686559677124, 0.9960784912109375, 0.9960784912109375, 0.2039215862751007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.2392157018184662, 0.9490196704864502, 0.9960784912109375, 0.9960784912109375, 0.2039215862751007, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4745098352432251, 0.9960784912109375, 0.9960784912109375, 0.8588235974311829, 0.1568627506494522, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.4745098352432251, 0.9960784912109375, 0.8117647767066956, 0.07058823853731155, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]}], "signature_name": "predict_images"}
调用AI服务
在准备好测试数据以后,我们需要找出AI服务对外的ip地址,然后通过curl
命令调用http服务,可以通过以下命令完成。
kubectl get pod -A -owide
curl 10.42.0.21:8010/v1/models/tf-serving:predict -X POST -d@test.json
# 因为前面做了端口映射,所以也可以直接用127.0.0.1这个地址访问服务
curl 127.0.0.1:8010/v1/models/tf-serving:predict -X POST -d@test.json
最终执行结果如下图所示:
如上图所示,给出了测试数据从0~9的概率,其中为7的概率是0.99597472,可以对上述输出结果做二次处理,然后直接返回结果7。具体mnist数据可以参考官网。