人体关键点识别
接口描述
对于输入的一张图片(可正常解码,且长宽比适宜),检测图片中的所有人体,输出每个人体的21个主要关键点,包含头顶、五官、脖颈、四肢等部位,同时输出人体的坐标信息和数量。
支持多人检测、人体位置重叠、遮挡、背面、侧面、中低空俯拍、大动作等复杂场景。
21个关键点的位置:头顶、左耳、右耳、左眼、右眼、鼻子、左嘴角、右嘴角、脖子、左肩、右肩、左手肘、右手肘、左手腕、右手腕、左髋部、右髋部、左膝、右膝、左脚踝、右脚踝。示意图如下,正在持续扩展更多关键点,敬请期待。
单人场景:
多人场景:
在线调试
您可以在 示例代码中心 中调试该接口,可进行签名验证、查看在线调用的请求内容和返回结果、示例代码的自动生成。
请求说明
请求示例
HTTP 方法:POST
请求URL: https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis
URL参数:
参数 | 值 |
---|---|
access_token | 通过API Key和Secret Key获取的access_token,参考“Access Token获取” |
Header如下:
参数 | 值 |
---|---|
Content-Type | application/x-www-form-urlencoded |
Body中放置请求参数,参数详情如下:
请求参数
参数 | 是否必选 | 类型 | 可选值范围 | 说明 |
---|---|---|---|---|
image | 是 | string | - | 图像数据,base64编码后进行urlencode,要求base64编码和urlencode后大小不超过4M。图片的base64编码是不包含图片头的,如(data:image/jpg;base64, ),支持图片格式:jpg、bmp、png,最短边至少50px,最长边最大4096px |
请求代码示例
提示一:使用示例代码前,请记得替换其中的示例Token、图片地址或Base64信息。
提示二:部分语言依赖的类或库,请在代码注释中查看下载地址。
人体关键点识别
curl -i -k 'https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis?access_token=【调用鉴权接口获取的token】' --data 'image=【图片Base64编码,需UrlEncode】' -H 'Content-Type:application/x-www-form-urlencoded'
<?php
/**
* 发起http post请求(REST API), 并获取REST请求的结果
* @param string $url
* @param string $param
* @return - http response body if succeeds, else false.
*/
function request_post($url = '', $param = '')
{
if (empty($url) || empty($param)) {
return false;
}
$postUrl = $url;
$curlPost = $param;
// 初始化curl
$curl = curl_init();
curl_setopt($curl, CURLOPT_URL, $postUrl);
curl_setopt($curl, CURLOPT_HEADER, 0);
// 要求结果为字符串且输出到屏幕上
curl_setopt($curl, CURLOPT_RETURNTRANSFER, 1);
curl_setopt($curl, CURLOPT_SSL_VERIFYPEER, false);
// post提交方式
curl_setopt($curl, CURLOPT_POST, 1);
curl_setopt($curl, CURLOPT_POSTFIELDS, $curlPost);
// 运行curl
$data = curl_exec($curl);
curl_close($curl);
return $data;
}
$token = '[调用鉴权接口获取的token]';
$url = 'https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis?access_token=' . $token;
$img = file_get_contents('[本地文件路径]');
$img = base64_encode($img);
$bodys = array(
'image' => $img
);
$res = request_post($url, $bodys);
var_dump($res);~~~~
package com.baidu.ai.aip;
import com.baidu.ai.aip.utils.Base64Util;
import com.baidu.ai.aip.utils.FileUtil;
import com.baidu.ai.aip.utils.HttpUtil;
import java.net.URLEncoder;
/**
* 人体关键点识别
*/
public class BodyAnalysis {
/**
* 重要提示代码中所需工具类
* FileUtil,Base64Util,HttpUtil,GsonUtils请从
* https://ai.baidu.com/file/658A35ABAB2D404FBF903F64D47C1F72
* https://ai.baidu.com/file/C8D81F3301E24D2892968F09AE1AD6E2
* https://ai.baidu.com/file/544D677F5D4E4F17B4122FBD60DB82B3
* https://ai.baidu.com/file/470B3ACCA3FE43788B5A963BF0B625F3
* 下载
*/
public static String body_analysis() {
// 请求url
String url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis";
try {
// 本地文件路径
String filePath = "[本地文件路径]";
byte[] imgData = FileUtil.readFileByBytes(filePath);
String imgStr = Base64Util.encode(imgData);
String imgParam = URLEncoder.encode(imgStr, "UTF-8");
String param = "image=" + imgParam;
// 注意这里仅为了简化编码每一次请求都去获取access_token,线上环境access_token有过期时间, 客户端可自行缓存,过期后重新获取。
String accessToken = "[调用鉴权接口获取的token]";
String result = HttpUtil.post(url, accessToken, param);
System.out.println(result);
return result;
} catch (Exception e) {
e.printStackTrace();
}
return null;
}
public static void main(String[] args) {
BodyAnalysis.body_analysis();
}
}
# encoding:utf-8
import requests
import base64
'''
人体关键点识别
'''
request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis"
# 二进制方式打开图片文件
f = open('[本地文件]', 'rb')
img = base64.b64encode(f.read())
params = {"image":img}
access_token = '[调用鉴权接口获取的token]'
request_url = request_url + "?access_token=" + access_token
headers = {'content-type': 'application/x-www-form-urlencoded'}
response = requests.post(request_url, data=params, headers=headers)
if response:
print (response.json())
#include <iostream>
#include <curl/curl.h>
// libcurl库下载链接:https://curl.haxx.se/download.html
// jsoncpp库下载链接:https://github.com/open-source-parsers/jsoncpp/
const static std::string request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis";
static std::string body_analysis_result;
/**
* curl发送http请求调用的回调函数,回调函数中对返回的json格式的body进行了解析,解析结果储存在全局的静态变量当中
* @param 参数定义见libcurl文档
* @return 返回值定义见libcurl文档
*/
static size_t callback(void *ptr, size_t size, size_t nmemb, void *stream) {
// 获取到的body存放在ptr中,先将其转换为string格式
body_analysis_result = std::string((char *) ptr, size * nmemb);
return size * nmemb;
}
/**
* 人体关键点识别
* @return 调用成功返回0,发生错误返回其他错误码
*/
int body_analysis(std::string &json_result, const std::string &access_token) {
std::string url = request_url + "?access_token=" + access_token;
CURL *curl = NULL;
CURLcode result_code;
int is_success;
curl = curl_easy_init();
if (curl) {
curl_easy_setopt(curl, CURLOPT_URL, url.data());
curl_easy_setopt(curl, CURLOPT_POST, 1);
curl_httppost *post = NULL;
curl_httppost *last = NULL;
curl_formadd(&post, &last, CURLFORM_COPYNAME, "image", CURLFORM_COPYCONTENTS, "【base64_img】", CURLFORM_END);
curl_easy_setopt(curl, CURLOPT_HTTPPOST, post);
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, callback);
result_code = curl_easy_perform(curl);
if (result_code != CURLE_OK) {
fprintf(stderr, "curl_easy_perform() failed: %s\n",
curl_easy_strerror(result_code));
is_success = 1;
return is_success;
}
json_result = body_analysis_result;
curl_easy_cleanup(curl);
is_success = 0;
} else {
fprintf(stderr, "curl_easy_init() failed.");
is_success = 1;
}
return is_success;
}
using System;
using System.IO;
using System.Net;
using System.Text;
using System.Web;
namespace com.baidu.ai
{
public class BodyAnalysis
{
// 人体关键点识别
public static string body_analysis()
{
string token = "[调用鉴权接口获取的token]";
string host = "https://aip.baidubce.com/rest/2.0/image-classify/v1/body_analysis?access_token=" + token;
Encoding encoding = Encoding.Default;
HttpWebRequest request = (HttpWebRequest)WebRequest.Create(host);
request.Method = "post";
request.KeepAlive = true;
// 图片的base64编码
string base64 = getFileBase64("[本地图片文件]");
String str = "image=" + HttpUtility.UrlEncode(base64);
byte[] buffer = encoding.GetBytes(str);
request.ContentLength = buffer.Length;
request.GetRequestStream().Write(buffer, 0, buffer.Length);
HttpWebResponse response = (HttpWebResponse)request.GetResponse();
StreamReader reader = new StreamReader(response.GetResponseStream(), Encoding.Default);
string result = reader.ReadToEnd();
Console.WriteLine("人体关键点识别:");
Console.WriteLine(result);
return result;
}
public static String getFileBase64(String fileName) {
FileStream filestream = new FileStream(fileName, FileMode.Open);
byte[] arr = new byte[filestream.Length];
filestream.Read(arr, 0, (int)filestream.Length);
string baser64 = Convert.ToBase64String(arr);
filestream.Close();
return baser64;
}
}
}
返回说明
接口除了返回人体框和每个关键点的坐标信息外,还会输出人体框和关键点的概率分数,实际应用中可以基于概率分数进行过滤,排除掉分数低的误识别“无效人体”,推荐的过滤方案:当关键点得分大于0.2的个数大于3,且人体框的得分大于0.03时,才认为是有效人体。
实际应用中,可根据对误识别、漏识别的容忍程度,调整阈值过滤方案,灵活应用,比如对误识别容忍低的应用场景,人体框的得分阈值可以提到0.06甚至更高。
返回参数
字段 | 是否必选 | 类型 | 说明 |
---|---|---|---|
log_id | 是 | uint64 | 唯一的log id,用于问题定位 |
person_num | 是 | uint32 | 人体数目 |
person_info | 是 | object[] | 人体姿态信息 |
+location | 是 | object | 人体坐标信息 |
++height | 是 | float | 人体区域的高度 |
++left | 是 | float | 人体区域离左边界的距离 |
++top | 是 | float | 人体区域离上边界的距离 |
++width | 是 | float | 人体区域的宽度 |
++score | 是 | float | 人体框的概率分数,取值0-1,得分越接近1表示识别准确的概率越大 |
+body_parts | 是 | object | 身体部位信息,包含21个关键点 |
++top_head | 是 | object | 头顶 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_eye | 是 | object | 左眼 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_eye | 是 | object | 右眼 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++nose | 是 | object | 鼻子 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_ear | 是 | object | 左耳 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_ear | 是 | object | 右耳 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_mouth_corner | 是 | object | 左嘴角 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_mouth_corner | 是 | object | 右嘴角 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++neck | 是 | object | 颈部 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_shoulder | 是 | object | 左肩 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_shoulder | 是 | object | 右肩 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_elbow | 是 | object | 左手肘 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_elbow | 是 | object | 右手肘 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_wrist | 是 | object | 左手腕 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_wrist | 是 | object | 右手腕 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_hip | 是 | object | 左髋部 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_hip | 是 | object | 右髋部 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_knee | 是 | object | 左膝 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_knee | 是 | object | 右膝 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++left_ankle | 是 | object | 左脚踝 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
++right_ankle | 是 | object | 右脚踝 |
+++x | 是 | float | x坐标 |
+++y | 是 | float | y坐标 |
+++score | 是 | float | 概率分数 |
说明:
1、body_parts,一共21个part,每个part包含x,y两个坐标,如果part被截断,则x、y坐标为part被截断的图片边界位置,part顺序以实际返回顺序为准。
2、接口返回人体坐标框和每个关键点的置信度分数,在应用时可综合置信度score分数,过滤掉置信度低的“无效人体”,建议过滤方法:当关键点得分大于0.2的个数大于3,且人体框的分数大于0.03时,才认为是有效人体。实际应用中,可根据对误识别、漏识别的容忍程度,调整阈值过滤方案,灵活应用。
返回示例
{
"person_num": 2,
"person_info": [
{
"body_parts": {
"left_hip": {
"y": 573,
"x": 686.09375,
"score": 0.78743487596512
},
"top_head": {
"y": 242.53125,
"x": 620,
"score": 0.87757384777069
},
"right_mouth_corner": {
"y": 308.625,
"x": 606.78125,
"score": 0.90121293067932
},
"neck": {
"y": 335.0625,
"x": 620,
"score": 0.84662038087845
},
"left_shoulder": {
"y": 361.5,
"x": 699.3125,
"score": 0.83550786972046
},
"left_knee": {
"y": 731.625,
"x": 699.3125,
"score": 0.83575332164764
},
"left_ankle": {
"y": 877.03125,
"x": 725.75,
"score": 0.85220056772232
},
"left_mouth_corner": {
"y": 308.625,
"x": 633.21875,
"score": 0.91475087404251
},
"right_elbow": {
"y": 348.28125,
"x": 461.375,
"score": 0.81766486167908
},
"right_ear": {
"y": 282.1875,
"x": 593.5625,
"score": 0.86551451683044
},
"nose": {
"y": 295.40625,
"x": 620,
"score": 0.90894532203674
},
"left_eye": {
"y": 282.1875,
"x": 633.21875,
"score": 0.89628517627716
},
"right_eye": {
"y": 282.1875,
"x": 606.78125,
"score": 0.89676940441132
},
"right_hip": {
"y": 586.21875,
"x": 593.5625,
"score": 0.79803824424744
},
"left_wrist": {
"y": 374.71875,
"x": 884.375,
"score": 0.89635348320007
},
"left_ear": {
"y": 295.40625,
"x": 659.65625,
"score": 0.86607384681702
},
"left_elbow": {
"y": 361.5,
"x": 791.84375,
"score": 0.83910942077637
},
"right_shoulder": {
"y": 348.28125,
"x": 553.90625,
"score": 0.85635334253311
},
"right_ankle": {
"y": 890.25,
"x": 580.34375,
"score": 0.85149073600769
},
"right_knee": {
"y": 744.84375,
"x": 580.34375,
"score": 0.83749794960022
},
"right_wrist": {
"y": 348.28125,
"x": 368.84375,
"score": 0.83893859386444
}
},
"location": {
"height": 703.20654296875,
"width": 652.61810302734,
"top": 221.92272949219,
"score": 0.99269664287567,
"left": 294.03039550781
}
},
{
"body_parts": {
"left_hip": {
"y": 576,
"x": 1239.5625,
"score": 0.84608125686646
},
"top_head": {
"y": 261.15625,
"x": 1176.59375,
"score": 0.871442258358
},
"right_mouth_corner": {
"y": 336.71875,
"x": 1164,
"score": 0.90951544046402
},
"neck": {
"y": 361.90625,
"x": 1176.59375,
"score": 0.85904294252396
},
"left_shoulder": {
"y": 361.90625,
"x": 1239.5625,
"score": 0.8512310385704
},
"left_knee": {
"y": 714.53125,
"x": 1277.34375,
"score": 0.82312393188477
},
"left_ankle": {
"y": 853.0625,
"x": 1315.125,
"score": 0.83786374330521
},
"left_mouth_corner": {
"y": 336.71875,
"x": 1189.1875,
"score": 0.90610301494598
},
"right_elbow": {
"y": 387.09375,
"x": 1025.46875,
"score": 0.88956367969513
},
"right_ear": {
"y": 311.53125,
"x": 1138.8125,
"score": 0.86518502235413
},
"nose": {
"y": 324.125,
"x": 1176.59375,
"score": 0.9168484210968
},
"left_eye": {
"y": 311.53125,
"x": 1189.1875,
"score": 0.91715461015701
},
"right_eye": {
"y": 311.53125,
"x": 1164,
"score": 0.90343600511551
},
"right_hip": {
"y": 576,
"x": 1164,
"score": 0.81976848840714
},
"left_wrist": {
"y": 298.9375,
"x": 1378.09375,
"score": 0.86095398664474
},
"left_ear": {
"y": 311.53125,
"x": 1201.78125,
"score": 0.86899447441101
},
"left_elbow": {
"y": 324.125,
"x": 1315.125,
"score": 0.89198768138885
},
"right_shoulder": {
"y": 387.09375,
"x": 1101.03125,
"score": 0.85161662101746
},
"right_ankle": {
"y": 878.25,
"x": 1151.40625,
"score": 0.83667933940887
},
"right_knee": {
"y": 727.125,
"x": 1151.40625,
"score": 0.85485708713531
},
"right_wrist": {
"y": 387.09375,
"x": 949.90625,
"score": 0.83042001724243
}
},
"location": {
"height": 670.80139160156,
"width": 524.25476074219,
"top": 241.42504882812,
"score": 0.98725789785385,
"left": 902.15216064453
}
}
],
"log_id": "6362401025381690607"
}