模型推理
更新时间:2024-05-17
模型推理
模型支持列表
目前DK-1B主要支持飞桨系列的PaddleClas、PaddleDetection、PaddleSeg、PaddleOCR套件。其中,有支持NPU推理加速的模型和支持CPU通用推理的模型,详单如下:
NPU模型支持列表
模型类型 | 模型列表 | 支持尺寸 | 模型信息 |
---|---|---|---|
clas_resnet | ResNet18 ResNet34 ResNet50 |
224x224 | PaddleClas |
det_yolov3 | YOLOv3-Mobilenet-V1 YOLOv3-DarkNet53 YOLOv3-ResNet34 |
320x320 416x416 608x608 |
PaddleDetection |
kpt_hrnet | HRNet-w32 | 256x192 384x288 |
PaddleDetection |
CPU模型支持列表
套件名称 | PaddleClas | PaddleDetection | PaddleSeg | PaddleOCR | ||||
---|---|---|---|---|---|---|---|---|
Github链接 | PaddleClas | PaddleDetection | PaddleSeg | PaddleOCR | ||||
细分 | classification | Detection | Multi Object Tracking | KeyPoint Detection | Semantic Segmentation | Image Matting | detection | recognition |
1 | ShiTuV2 | PP-PicoDet | DeepSORT | PP-TinyPose | Glore | PP-Matting | SAST | SVTR |
2 | PP-LCNetV2 | PP-YOLOE+ | HRNet | LRASPP | PP-HumanMatting | ch-PP-OCRv3 | StarNet | |
3 | PP-HGNet | PP-YOLOE | Lite-HRNet | DDRNet | MODNet | PSE | Rosetta | |
4 | CSWinTransformer | PP-YOLO | PP-LiteSeg | DB | ch_PP-OCRv3 | |||
5 | ReID | YOLOv3 | DeepLabV3 | EAST | ch_PP-OCRv2 | |||
6 | PULC | FCOS | DeepLabV3P | RARE | ||||
7 | PVT_V2 | Faster RCNN | GCNet | CRNN | ||||
8 | ResNet | SFNet | SRN | |||||
9 | GhostNet | LaneSeg | ||||||
10 | Twins | OCRNet | ||||||
11 | ResNeSt | DecoupledSegNet | ||||||
12 | DPN | PointRend | ||||||
13 | ViT | EMANet | ||||||
14 | MixNet | U-Net | ||||||
15 | DarkNet53 | ESPNetV1 | ||||||
16 | SEResNeXt | DANet | ||||||
17 | SqueezeNet | SegFormer | ||||||
18 | Inception | PFPNNet | ||||||
19 | VGG | FCN | ||||||
20 | MobileNetV2 | BiSeNetV2 | ||||||
21 | ReXNet | ANN | ||||||
22 | DenseNet | STDCSeg | ||||||
23 | MobileNetV1 | ENCNet | ||||||
24 | HarDNet | HarDNet | ||||||
25 | Xception | DNLNet | ||||||
26 | AlexNet | HRNetW48Contrast | ||||||
27 | Res2Net | |||||||
28 | ShuffleNetV2 | |||||||
29 | DLA | |||||||
30 | PP-LCNet | |||||||
31 | MobileNetV3 | |||||||
32 | DeiT | |||||||
33 | EfficientNet | |||||||
34 | HRNet | |||||||
35 | ESNet | |||||||
36 | CSWinTransformer |