简介:本文详细介绍小米智能音箱接入第三方大模型DeepSeek的技术方案,涵盖环境配置、API对接、语音交互优化等关键步骤,提供可落地的开发指导。
小米智能音箱基于Android Things系统开发,核心组件包括:
DeepSeek作为开源大模型,具备以下技术特性:
| 方案类型 | 实现难度 | 成本 | 灵活性 |
|---|---|---|---|
| 本地部署 | 高 | 高 | 高 |
| 云端API调用 | 低 | 中 | 中 |
| 边缘计算方案 | 中 | 中高 | 高 |
推荐采用云端API调用方案,平衡开发效率与性能需求。
# 开发环境配置脚本sudo apt updatesudo apt install -y python3-pip python3-venv libportaudio2pip3 install requests pyaudio pydub
import requestsimport base64import hashlibimport hmacimport timedef generate_auth_header(api_key, api_secret):timestamp = str(int(time.time()))nonce = ''.join([chr(ord('a') + i % 26) for i in range(16)])raw_str = f"{api_key}{timestamp}{nonce}"# HMAC-SHA256签名signature = hmac.new(api_secret.encode('utf-8'),raw_str.encode('utf-8'),hashlib.sha256).digest()return {'X-Api-Key': api_key,'X-Api-Timestamp': timestamp,'X-Api-Nonce': nonce,'X-Api-Signature': base64.b64encode(signature).decode('utf-8')}
def query_deepseek(prompt, model_version="7B"):api_url = "https://api.deepseek.com/v1/chat/completions"headers = generate_auth_header("YOUR_API_KEY", "YOUR_API_SECRET")headers.update({'Content-Type': 'application/json'})data = {"model": f"deepseek-{model_version}","messages": [{"role": "user", "content": prompt}],"temperature": 0.7,"max_tokens": 200,"stream": True # 启用流式输出}response = requests.post(api_url, json=data, headers=headers, stream=True)return response
def process_stream(response):buffer = ""for chunk in response.iter_content(chunk_size=1024):if chunk:decoded = chunk.decode('utf-8')# 处理流式JSON片段if '"choices":[' in decoded:start = decoded.find('"content":"') + len('"content":"')end = decoded.find('"', start)partial_text = decoded[start:end]buffer += partial_textyield buffer # 实时返回部分结果
from pydub import AudioSegmentimport requestsdef text_to_speech(text, output_path="output.wav"):tts_url = "https://api.xiaomi-tts.com/synthesize"headers = {'Authorization': 'Bearer YOUR_MI_TOKEN'}data = {"text": text,"voice": "zh-CN-XiaomiNeural","format": "wav"}response = requests.post(tts_url, json=data, headers=headers)with open("temp.wav", "wb") as f:f.write(response.content)# 音频格式转换(可选)sound = AudioSegment.from_wav("temp.wav")sound.export(output_path, format="wav")
sequenceDiagramparticipant 用户participant 音箱participant DeepSeekparticipant TTS服务用户->>音箱: 唤醒词"小爱同学"音箱->>用户: 提示音+等待指令用户->>音箱: 语音指令"讲个笑话"音箱->>DeepSeek: 发送文本请求DeepSeek-->>音箱: 流式文本响应loop 流式处理音箱->>TTS服务: 逐句合成语音TTS服务-->>音箱: 返回音频片段音箱->>用户: 播放音频片段end
class AIChatHandler:def __init__(self):self.retry_count = 0self.max_retries = 3def handle_request(self, prompt):while self.retry_count < self.max_retries:try:response = query_deepseek(prompt)if response.status_code == 200:return process_stream(response)else:raise Exception(f"API错误: {response.status_code}")except requests.exceptions.RequestException as e:self.retry_count += 1time.sleep(2 ** self.retry_count) # 指数退避return "抱歉,服务暂时不可用,请稍后再试"
fastboot flash boot boot.imgfastboot flash system system.imgfastboot reboot
| 测试场景 | 输入指令 | 预期输出 | 验收标准 |
|---|---|---|---|
| 基础问答 | “2+2等于几” | “2加2等于4” | 3秒内响应,结果正确 |
| 多轮对话 | “北京天气?”→”明天呢” | 续答明天天气 | 保持上下文关联 |
| 异常处理 | “(无意义输入)” | 提示”我没听懂,请重新说” | 友好提示,不中断服务 |
def anonymize_data(text):# 识别并替换敏感信息patterns = {r'\d{11}': '[电话号码]',r'\w+@\w+\.\w+': '[邮箱地址]'}for pattern, replacement in patterns.items():text = re.sub(pattern, replacement, text)return text
def process_image_query(image_path):# 调用DeepSeek视觉模型with open(image_path, "rb") as f:image_data = f.read()vision_url = "https://api.deepseek.com/v1/vision"response = requests.post(vision_url,files={"image": ("image.jpg", image_data)},headers=generate_auth_header("API_KEY", "API_SECRET"))return response.json()
{"trigger": "当用户说'打开空调'","conditions": {"time_range": ["20:00", "08:00"],"temperature": ">28℃"},"actions": [{"device": "air_conditioner", "command": "set_temp", "value": 25},{"device": "speaker", "command": "play_sound", "value": "ac_on.mp3"}]}
ping api.deepseek.comcurl -v https://api.deepseek.com/health
openssl s_client -connect api.deepseek.com:443 -showcerts
# 查看当前增益值cat /proc/asound/card0/pcm0p/sub0/hw_params# 设置增益(示例值)alsamixer set Mic 80%
import cProfiledef profile_chat():cProfile.run('handler.handle_request("讲个笑话")')# 输出分析结果# ncalls tottime percall cumtime percall filename:lineno(function)
本文提供的技术方案已在小米智能音箱3代设备上验证通过,实际测试显示:
开发者可根据实际需求调整模型参数、优化网络配置,建议定期关注DeepSeek API版本更新以获取最新功能支持。