搜索本产品文档关键词
Overview
所有文档
menu
没有找到结果,请重新输入

百度流式计算 BSC

Overview

支持的 Connectors

服务类型 SPARK FLINK
Source Sink Source Sink
KAFKA Y Y Y Y
BOS Y Y Y Y
MQTT Y Y Y
RDS Y Y Y Y
ES Y Y
PALO Y Y Y
TSDB Y Y

如何使用 Connector

CREATE TABLE source_kafka_table (
    `field01` STRING,
    `field02` BIGINT,
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'KAFKA',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-source',
    'format.encode' = 'JSON',
    'connector.properties.bootstrap.servers' = 'kafka.gz.baidubce.com:9092',
    'connector.properties.ssl.filename' = 'kafka-key_gz.zip',
    'connector.properties.group.id' = 'bsc123',
    'connector.read.startup.mode' = 'earliest'
);

字段类型

TYPE SPARK FLINK MAPPING
TINYINT Y Y BTYE / TINYINT
SMALLINT Y Y SHORT / SMALLINT
INT Y Y INT / INTEGER
BIGINT Y Y LONG / BIGINT
FLOAT Y Y FLOAT
DOUBLE Y Y DOUBLE
STRING Y Y STRING / CHAR / VARCHAR
BINARY Y Y BINARY / VARBINARY / BYTES
BOOLEAN Y Y BOOLEAN / BOOL
TIMESTAMP Y Y TIMESTAMP / SQL_TIMESTAMP
DECIMAL Y Y DECIMAL
DATE Y Y DATE / LOCAL_DATE
TIME Y TIME / LOCAL_TIME
ARRAY Y Y ARRAY
MAP Y Y MAP
ROW Y ROW
STRUCT Y STRUCT

时间属性

注意:SPARK 仅仅支持指定 source table 中某一时间类型的列作为 watermark 处理窗口的时间

属性如何支持 EVENTTIME 和 PROCTIME

属性名称 说明 EVENTTIME 设置举例 PROCTIME 设置举例
watermark.field 使用事件时间的字段作为时间提取 'field' ''
watermark.threshold 时间窗口的允许最大延迟设置 '2 seconds',支持单位有:milliseconds,seconds,minutes,hours ''
watermark.field.alias SQL正文中使用的时间别名 'alias' 'proctime'
watermark.field.pattern 设置日期模式进行转换时间戳 'yyyy-MM-dd HH:mm:ss' ''
watermark.field.timezone 设置日期模式进行转换时区 'Asia/Shanghai' ''

EVENTTIME支持的时间字段类型及其对应参数设置

字段类型 watermark.field.pattern watermark.field.timezone 说明
BIGINT 's'、'ms'、'second'、'millisecond' '' 使用的字段为LONG,转化为毫秒
STRING 'yyyy-MM-dd HH:mm:ss' 'Asia/Shanghai' 使用的字段能够通过指定的模式转换为日期
TIMESTAMP '' '' 使用的字段,必须符合TZ格式:2018-05-20T00:08:00Z

日期格式对照标配表

pattern timezone
yyyy-MM-dd'T'HH:mm:ss.SSS Asia/Shanghai
yyyy-MM-dd'T'HH:mm:ss.SSS'Z' UTC
yyyy-MM-dd'T'HH:mm:ss Asia/Shanghai
yyyy-MM-dd'T'HH:mm:ss'Z' UTC
yyyy-MM-dd HH:mm:ss.SSS Asia/Shanghai
yyyy-MM-dd HH:mm:ss.SSS'Z' UTC
yyyy-MM-dd HH:mm:ss Asia/Shanghai
yyyy-MM-dd HH:mm:ss'Z' UTC

带有EVENTTIME的 Connector

使用 EVENTTIME 时,需要指定 source 表中某一列作为时间戳,并配置其 watermark 等时间属性参数。

CREATE TABLE source_kafka_table (
    `field01` STRING,
    `field02` BIGINT,   -- 时间戳为 BIGINT, 如 1523525179,单位为秒
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-source',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip',
    'connector.properties.group.id' = 'bsc123',
    'connector.read.startup.mode' = 'earliest',
    'watermark.field' = 'field02',
    'watermark.threshold' = '1 minutes',
    'watermark.field.pattern' = 's' -- 时间戳字段的单位默认为 ms
);
CREATE TABLE sink_kafka_table (
    `timestamp` BIGINT,
    `field01` STRING,
    `count` BIGINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-sink',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip'
);
INSERT INTO
    sink_kafka_table
SELECT
    TO_BIGINT(TUMBLE_START(`field02`, INTERVAL '1' MINUTE)) AS `timestamp`,
    `field01`,
    COUNT(`field05`)
FROM
    source_kafka_table
GROUP BY 
    TUMBLE(`field02`, INTERVAL '1' MINUTE),
    `field01`
CREATE TABLE source_kafka_table (
    `field01` STRING,
    `field02` STRING,  -- 时间戳为 STRING, 如 2018-05-20 00:11:00
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-source',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip',
    'connector.properties.group.id' = 'bsc123',
    'connector.read.startup.mode' = 'earliest',
    'watermark.field' = 'field02',
    'watermark.threshold' = '1 minutes''watermark.field.pattern' = 'yyyy-MM-dd HH:mm:ss',  -- 时间戳字段的数据格式
    'watermark.field.timezone' = 'Asia/Shanghai'
);
CREATE TABLE sink_kafka_table (
    `timestamp` TIMESTAMP,
    `field01` STRING,
    `count` BIGINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-sink',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip'
);
INSERT INTO
    sink_kafka_table
SELECT
    TUMBLE_START(`field02`, INTERVAL '1' MINUTE) AS `timestamp`,
    `field01`,
    COUNT(`field05`) AS `count`
FROM
    source_kafka_table
GROUP BY 
    TUMBLE(`field02`, INTERVAL '1' MINUTE),
    `field01`
CREATE TABLE source_kafka_table (
    `field01` STRING,
    `field02` TIMESTAMP,  -- 时间戳为 TIMESTAMP, 即 2018-05-20T00:11:00Z 这种 TZ 格式
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'BKAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-source',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip',
    'connector.properties.group.id' = 'bsc123',
    'connector.read.startup.mode' = 'earliest',
    'watermark.field' = 'field02',
    'watermark.threshold' = '1 minutes'
);
CREATE TABLE sink_kafka_table (
    `timestamp` BIGINT,
    `field01` STRING,
    `count` BIGINT
) WITH (
    'connector.type' = 'BKAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-sink',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip'
);
INSERT INTO
    sink_kafka_table
SELECT
    TO_BIGINT(TUMBLE_START(`field02`, INTERVAL '1' MINUTE)) AS `timestamp`,
    `field01`,
    COUNT(`field05`)
FROM
    source_kafka_table
GROUP BY 
    TUMBLE(`field02`, INTERVAL '1' MINUTE),
    `field01`
CREATE TABLE source_kafka_table (
    `field01` STRING,
    `field02` TIMESTAMP,  -- 时间戳为 TIMESTAMP, 即 2018-05-20T00:11:00Z 这种 TZ 格式
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-source',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip',
    'connector.properties.group.id' = 'bsc123',
    'connector.read.startup.mode' = 'earliest',
    'watermark.field' = 'field02',
    'watermark.threshold' = '1 minutes',
    'watermark.field.alias' = 'rowtime'
);
CREATE TABLE sink_kafka_table (
    `timestamp` BIGINT,
    `field01` STRING,
    `count` BIGINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-sink',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip'
);
INSERT INTO
    sink_kafka_table
SELECT
    TO_BIGINT(TUMBLE_START(`rowtime`, INTERVAL '1' MINUTE)) AS `timestamp`,
    `field01`,
    COUNT(`field05`)
FROM
    source_kafka_table
GROUP BY 
    TUMBLE(`rowtime`, INTERVAL '1' MINUTE),
    `field01`
CREATE TABLE source_kafka_table (
    `field01` STRING,
    `field02` TIMESTAMP,  -- SPARK 支持窗口数据类型为 TIMESTAMP
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-source',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip',
    'watermark.field' = 'field02',
    'watermark.threshold' = '10 seconds'
);
CREATE TABLE sink_kafka_table (
    `timestamp` TIMESTAMP,
    `field01` STRING,
    `count` BIGINT
) WITH (
    'connector.type' = 'KAFKA',
    'format.encode' = 'JSON',
    'connector.topic' = 'xxxxxxxxxxxx__bsc-test-sink',
    'connector.properties.bootstrap.servers' = 'kafka.bj.baidubce.com:9091',
    'connector.properties.ssl.filename' = 'kafka-key-bj.zip'
);
INSERT INTO
    sink_kafka_table
SELECT
    window.start AS `timestamp`,
    `field01`,
    COUNT(`field05`) AS `count`
FROM
    source_kafka_table
GROUP BY 
    window(`field02`, "1 MINUTE"),
    `field01`

带有 PROCTIME 的 Connector

使用进程的处理时间作为时间戳,FLINK不需要指定 source 表中某一列,只需要加入 SET job.streamTimeType = 'PROCESSTIME' 语句即可。

SET job.stream.timeType = 'PROCESSTIME'; -- 通过 SET 语句指定 Flink 使用 PROCTIME
CREATE TABLE source_mqtt_table (
    `field01` STRING,
    `field02` BIGINT,
    `field03` FLOAT,
    `field04` BINARY,
    `field05` INT,
    `field06` TINYINT,
    `field07` BOOLEAN,
    `field08` DATA,
    `field09` DOUBLE,
    `field10` SMALLINT
) WITH (
    'connector.type' = 'MQTT',
    'format.encode' = 'JSON',
    'connector.url' = 'tcp://xxxxxx.mqtt.iot.gz.baidubce.com:1883',
    'connector.topic' = 'xxxx',
    'connector.username' = 'xxxxxxxxx/bsc_test',
    'connector.password' = 'xxxxxxxx',
    'connector.semantic' = 'at_least_once'
);
上一篇
SET 语句
下一篇
Formats