简介:本文详细介绍在Ubuntu Linux系统上部署DeepSeek的完整流程,涵盖环境准备、依赖安装、模型下载、推理服务配置及性能调优等关键步骤,提供可复用的脚本和故障排查方案。
推荐使用Ubuntu 22.04 LTS或20.04 LTS版本,这两个版本对深度学习框架的支持最为稳定。通过lsb_release -a命令可查看当前系统版本,若版本过低需通过sudo do-release-upgrade进行升级。
DeepSeek模型对硬件有明确要求:
通过nvidia-smi -L验证GPU识别情况,使用free -h检查内存,df -h查看存储空间。
确保服务器具备稳定网络连接,推荐配置:
sudo ufw allow 22/tcp # SSH端口sudo ufw allow 6006/tcp # TensorBoard端口(可选)sudo ufw enable
sudo add-apt-repository ppa:graphics-drivers/ppasudo apt update
ubuntu-drivers devices查看推荐版本):
sudo apt install nvidia-driver-535
nvidia-smi # 应显示驱动版本和GPU状态
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pinsudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pubsudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"sudo apt updatesudo apt install cuda-12-2
echo 'export PATH=/usr/local/cuda-12.2/bin:$PATH' >> ~/.bashrcecho 'export LD_LIBRARY_PATH=/usr/local/cuda-12.2/lib64:$LD_LIBRARY_PATH' >> ~/.bashrcsource ~/.bashrc
nvcc --version # 应显示CUDA版本
推荐使用conda管理环境:
# 安装Minicondawget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shbash Miniconda3-latest-Linux-x86_64.sh# 创建专用环境conda create -n deepseek python=3.10conda activate deepseek
通过官方渠道下载模型权重文件,推荐使用wget或rsync:
# 示例命令(需替换为实际URL)wget https://example.com/deepseek-model.tar.gztar -xzvf deepseek-model.tar.gz -C ~/models/
选择PyTorch或TensorRT路径:
PyTorch路径:
pip install torch==2.0.1 torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118pip install transformers accelerate
TensorRT路径(需先安装TensorRT):
# 添加NVIDIA仓库sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/7fa2af80.pubsudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"sudo apt install tensorrt# 安装ONNX Runtimepip install onnxruntime-gpu
使用FastAPI创建推理服务:
# app.pyfrom fastapi import FastAPIfrom transformers import AutoModelForCausalLM, AutoTokenizerimport torchapp = FastAPI()model_path = "/path/to/deepseek-model"tokenizer = AutoTokenizer.from_pretrained(model_path)model = AutoModelForCausalLM.from_pretrained(model_path, torch_dtype=torch.float16).half().cuda()@app.post("/generate")async def generate(prompt: str):inputs = tokenizer(prompt, return_tensors="pt").to("cuda")outputs = model.generate(**inputs, max_new_tokens=200)return tokenizer.decode(outputs[0], skip_special_tokens=True)
启动服务:
pip install fastapi uvicornuvicorn app:app --host 0.0.0.0 --port 8000 --workers 4
model = model.half().cuda() # FP16模式
from torch.utils.checkpoint import checkpoint# 在模型前向传播中插入checkpoint
from torch2trt import torch2trt# 转换模型trt_model = torch2trt(model, [input_sample], fp16_mode=True)
# 在生成配置中设置outputs = model.generate(..., do_sample=True, temperature=0.7, continuous_batching=True)
while True:
stats = gpustat.GPUStatCollection.new_query()
for gpu in stats:
print(f”GPU {gpu.index}: {gpu.temperature.gpu}°C, Util {gpu.utilization.gpu}%”)
time.sleep(5)
## 五、故障排查指南### 5.1 常见问题处理| 问题现象 | 可能原因 | 解决方案 ||---------|---------|---------|| CUDA错误:out of memory | 显存不足 | 减小batch_size,启用梯度累积 || 模型加载失败 | 路径错误/文件损坏 | 验证MD5校验和,检查文件权限 || 服务无响应 | 端口冲突 | 使用`netstat -tulnp`检查端口占用 |### 5.2 日志分析技巧1. 启用详细日志:```pythonimport logginglogging.basicConfig(level=logging.DEBUG)
import timestart = time.time()# 执行推理end = time.time()print(f"Inference time: {end-start:.2f}s")
FROM nvidia/cuda:12.2.0-base-ubuntu22.04RUN apt update && apt install -y python3-pipCOPY requirements.txt .RUN pip install -r requirements.txtCOPY . /appWORKDIR /appCMD ["uvicorn", "app:app", "--host", "0.0.0.0", "--port", "8000"]
docker build -t deepseek-service .docker run --gpus all -p 8000:8000 deepseek-service
使用Kubernetes部署:
# deployment.yamlapiVersion: apps/v1kind: Deploymentmetadata:name: deepseekspec:replicas: 3selector:matchLabels:app: deepseektemplate:metadata:labels:app: deepseekspec:containers:- name: deepseekimage: deepseek-service:latestresources:limits:nvidia.com/gpu: 1ports:- containerPort: 8000
配置服务发现:
# service.yamlapiVersion: v1kind: Servicemetadata:name: deepseek-servicespec:selector:app: deepseekports:- protocol: TCPport: 80targetPort: 8000type: LoadBalancer
slowapi)通过以上系统化的部署方案,开发者可在Ubuntu Linux环境下实现DeepSeek模型的高效稳定运行。实际部署中应根据具体业务需求调整参数配置,并持续监控系统性能指标。