简介:本文提供DeepSeek本地安装的完整教程,涵盖环境配置、依赖安装、模型下载及验证的全流程,帮助开发者与企业用户实现高效部署。
在AI技术快速发展的当下,DeepSeek作为一款高性能的深度学习框架,其本地化部署成为开发者与企业用户的核心需求。相较于云端服务,本地部署具有三大优势:
关键验证命令:
# 检查GPU与CUDAnvidia-sminvcc --version# 验证Python环境conda list | grep torch
conda create -n deepseek_env python=3.9conda activate deepseek_env
# PyTorch安装(根据CUDA版本选择)pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118# 安装Transformers与DeepSeek扩展pip install transformers[torch]pip install git+https://github.com/deepseek-ai/DeepSeek.git
deepseek-7b或deepseek-67b);bitsandbytes量化工具减少显存占用:
pip install bitsandbytes
模型加载示例:
from transformers import AutoModelForCausalLM, AutoTokenizermodel_path = "./deepseek-7b"tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)model = AutoModelForCausalLM.from_pretrained(model_path,device_map="auto",torch_dtype="auto",trust_remote_code=True)
REST API部署:使用FastAPI封装推理接口:
from fastapi import FastAPIimport uvicornapp = FastAPI()@app.post("/generate")async def generate(prompt: str):inputs = tokenizer(prompt, return_tensors="pt").to("cuda")outputs = model.generate(**inputs, max_length=100)return tokenizer.decode(outputs[0], skip_special_tokens=True)if __name__ == "__main__":uvicorn.run(app, host="0.0.0.0", port=8000)
model = AutoModelForCausalLM.from_pretrained(model_path,load_in_8bit=True, # 或load_in_4bit=Truedevice_map="auto")
accelerate库实现数据并行:
accelerate configaccelerate launch --num_processes=4 your_script.py
batch_size或使用梯度检查点;fuser -v /dev/nvidia*)。trust_remote_code=True以支持自定义模型;sha256sum校验)。curl -v http://localhost:8000/generate测试接口。
FROM nvidia/cuda:11.8.0-base-ubuntu22.04RUN apt-get update && apt-get install -y python3-pipCOPY requirements.txt .RUN pip install -r requirements.txtCOPY . /appWORKDIR /appCMD ["python", "api_server.py"]
本地部署DeepSeek需兼顾硬件选型、环境配置与性能调优。通过量化技术、并行计算等手段,可在有限资源下实现高效推理。未来可探索:
完整代码与配置文件:访问GitHub仓库获取示例脚本与Docker镜像。