简介:本文详细解析Spring AI与DeepSeek的集成方案,涵盖环境配置、核心功能实现及优化策略,提供可复用的代码示例与最佳实践,助力开发者快速构建智能应用。
Spring AI作为Spring生态的智能扩展模块,通过统一的编程模型简化了AI能力的集成。其核心优势在于:
@Bean
定义AI资源,结合Spring Boot的自动配置特性,实现”开箱即用”的体验。DeepSeek作为新一代大语言模型,其技术亮点包括:
组件 | 版本要求 | 备注 |
---|---|---|
JDK | 17+ | 推荐使用LTS版本 |
Spring Boot | 3.0+ | 需启用AI模块 |
DeepSeek | v1.2+ | 支持API与本地部署模式 |
构建工具 | Maven 3.8+/Gradle 7.5+ | 确保插件兼容性 |
在pom.xml
中添加Spring AI与DeepSeek的依赖:
<dependencies>
<!-- Spring AI核心模块 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-starter</artifactId>
<version>0.7.0</version>
</dependency>
<!-- DeepSeek适配器 -->
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-deepseek</artifactId>
<version>0.7.0</version>
</dependency>
</dependencies>
application.yml
配置示例:
spring:
ai:
deepseek:
api-key: ${DEEPSEEK_API_KEY} # 推荐使用环境变量
base-url: https://api.deepseek.com/v1
model: deepseek-chat-7b
timeout: 5000 # 毫秒
retry:
max-attempts: 3
initial-interval: 1000
通过DeepSeekAutoConfiguration
自动配置类,开发者可快速获取模型实例:
@Configuration
public class AiConfig {
@Bean
public ChatClient deepSeekChatClient(DeepSeekProperties properties) {
return DeepSeekChatClient.builder()
.apiKey(properties.getApiKey())
.baseUrl(properties.getBaseUrl())
.model(properties.getModel())
.build();
}
}
实现一个简单的问答服务:
@Service
public class QaService {
private final ChatClient chatClient;
public QaService(ChatClient chatClient) {
this.chatClient = chatClient;
}
public String askQuestion(String question) {
ChatMessage message = ChatMessage.builder()
.role(Role.USER)
.content(question)
.build();
ChatResponse response = chatClient.chat(
ChatRequest.builder()
.messages(List.of(message))
.build()
);
return response.getChoices().get(0).getMessage().getContent();
}
}
public void streamResponse(String question, OutputStream outputStream) {
chatClient.streamChat(
ChatRequest.builder()
.messages(List.of(buildMessage(question)))
.build(),
new StreamingResponseHandler() {
@Override
public void onNext(ChatResponseChunk chunk) {
// 实时处理分块数据
outputStream.write(chunk.getContent().getBytes());
}
@Override
public void onComplete() {
outputStream.flush();
}
}
);
}
public ImageResponse generateImage(String prompt) {
ImageGenerateRequest request = ImageGenerateRequest.builder()
.prompt(prompt)
.n(1)
.size(ImageSize.SIZE_1024_1024)
.build();
return imageClient.generateImages(request);
}
spring:
ai:
deepseek:
connection-pool:
max-size: 20
idle-timeout: 60000
@Configuration
public class CacheConfig {
@Bean
public CacheManager aiCacheManager() {
return CaffeineCacheManagerBuilder
.createCaffeineCacheManager()
.withCache("ai-responses",
Caffeine.newBuilder()
.expireAfterWrite(10, TimeUnit.MINUTES)
.maximumSize(1000)
).build();
}
}
@Async
public CompletableFuture<String> asyncAskQuestion(String question) {
return CompletableFuture.supplyAsync(() -> qaService.askQuestion(question));
}
try {
// AI调用代码
} catch (AiServiceException e) {
if (e.getCode() == HttpStatus.TOO_MANY_REQUESTS) {
// 实现退避算法
Thread.sleep(calculateBackoffTime(e));
} else {
throw e;
}
}
Spring AI已集成Micrometer,可通过以下指标监控:
ai.request.count
:总请求数ai.request.duration
:请求耗时分布ai.error.rate
:错误率
public class CustomerService {
public Response handleInquiry(Inquiry inquiry) {
String answer = qaService.askQuestion(inquiry.getContent());
return Response.builder()
.content(answer)
.referenceDocs(getSupportingDocs(inquiry))
.build();
}
}
public String generateCode(String requirements) {
PromptTemplate template = PromptTemplate.builder()
.template("生成符合以下要求的Java代码:\n{requirements}")
.build();
String prompt = template.apply(Map.of("requirements", requirements));
return qaService.askQuestion(prompt);
}
spring.ai.deepseek.timeout
配置值本文通过系统化的技术解析与实战案例,为开发者提供了Spring AI与DeepSeek集成的完整指南。建议开发者在实际项目中结合具体业务场景,持续优化集成方案,充分发挥AI技术的业务价值。