简介:本文详细介绍DeepSeek框架的本地安装与部署流程,涵盖环境准备、依赖安装、模型加载及性能优化等全流程。通过分步骤讲解和代码示例,帮助开发者在本地环境快速构建AI应用开发平台。
本地部署DeepSeek需满足以下最低配置:
典型场景配置方案:
推荐使用Ubuntu 20.04/22.04 LTS,兼容性经过验证。Windows系统需通过WSL2或Docker容器运行,可能存在性能损耗。
关键系统参数配置:
# 修改文件描述符限制echo "* soft nofile 65536" | sudo tee -a /etc/security/limits.confecho "* hard nofile 65536" | sudo tee -a /etc/security/limits.conf# 调整swap空间(建议为物理内存的1.5倍)sudo fallocate -l 48G /swapfilesudo chmod 600 /swapfilesudo mkswap /swapfilesudo swapon /swapfile
# 安装编译工具sudo apt updatesudo apt install -y build-essential cmake git wget curl \libopenblas-dev liblapack-dev \python3-dev python3-pip# 配置Python环境(推荐3.8-3.10)sudo apt install -y python3.10 python3.10-venvpython3.10 -m venv ~/deepseek_envsource ~/deepseek_env/bin/activate
NVIDIA驱动安装流程:
# 添加显卡驱动仓库sudo add-apt-repository ppa:graphics-drivers/ppasudo apt update# 安装推荐驱动版本ubuntu-drivers devices # 查看推荐版本sudo apt install -y nvidia-driver-535 # 示例版本# 验证安装nvidia-smi # 应显示GPU状态
CUDA 11.8安装步骤:
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pinsudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-ubuntu2204-11-8-local_11.8.0-1_amd64.debsudo dpkg -i cuda-repo-ubuntu2204-11-8-local_11.8.0-1_amd64.debsudo cp /var/cuda-repo-ubuntu2204-11-8-local/cuda-*-keyring.gpg /usr/share/keyrings/sudo apt updatesudo apt install -y cuda
# 克隆官方仓库git clone --recursive https://github.com/deepseek-ai/DeepSeek.gitcd DeepSeek# 编译配置mkdir build && cd buildcmake .. -DCMAKE_CUDA_ARCHITECTURES="80;86" # 根据GPU型号调整make -j$(nproc)sudo make install
# 创建虚拟环境(如未创建)python -m venv venvsource venv/bin/activate# 安装依赖pip install --upgrade pippip install torch==1.13.1+cu117 torchvision -f https://download.pytorch.org/whl/torch_stable.htmlpip install -r requirements.txt# 验证安装python -c "import deepseek; print(deepseek.__version__)"
# 下载预训练模型(示例)wget https://example.com/models/deepseek-base.zipunzip deepseek-base.zip -d models/# 模型格式转换(如需)python tools/convert_model.py \--input_path models/deepseek-base.pt \--output_path models/deepseek-base-fp16.pt \--dtype float16
创建config.yaml配置文件:
model:path: "models/deepseek-base-fp16.pt"device: "cuda:0"batch_size: 32max_seq_len: 2048server:host: "0.0.0.0"port: 8080workers: 4
启动服务命令:
python app/server.py --config config.yaml
torch.cuda.empty_cache()定期清理缓存export PYTORCH_CUDA_ALLOC_CONF=garbage_collection_threshold:0.8
# 在配置文件中添加model:parallel:type: "tensor" # 或pipeline/expertdevices: [0,1,2,3]tensor_parallel_size: 4
推荐监控方案:
# 安装Prometheus Node Exportersudo apt install -y prometheus-node-exporter# 配置GPU监控sudo nvidia-smi daemon -l 1 -f /var/log/nvidia-smi.log
解决方案:
batch_size参数torch.backends.cudnn.benchmark = True
import torchprint(torch.cuda.memory_summary())
排查步骤:
file models/deepseek-base.pt # 应显示PyTorch模型
import torchprint(torch.version.cuda) # 应与安装版本一致
Dockerfile示例:
FROM nvidia/cuda:11.8.0-base-ubuntu22.04RUN apt update && apt install -y python3.10 python3-pip gitRUN python3.10 -m pip install torch==1.13.1+cu117 -f https://download.pytorch.org/whl/torch_stable.htmlCOPY . /appWORKDIR /appRUN pip install -r requirements.txtCMD ["python", "app/server.py", "--config", "config.yaml"]
构建与运行:
docker build -t deepseek:latest .docker run --gpus all -p 8080:8080 deepseek:latest
关键配置片段:
# deployment.yamlapiVersion: apps/v1kind: Deploymentmetadata:name: deepseekspec:replicas: 3template:spec:containers:- name: deepseekimage: deepseek:latestresources:limits:nvidia.com/gpu: 1memory: "32Gi"
本教程完整覆盖了DeepSeek从环境搭建到生产部署的全流程,通过详细的配置说明和故障排查指南,帮助开发者在本地环境实现高效稳定的AI模型运行。实际部署时建议先在测试环境验证配置,再逐步扩展到生产环境。