简介:本文详细解析DeepSeek本地安装部署的全流程,涵盖环境准备、依赖安装、模型加载、性能优化等关键环节,提供分步操作指南和常见问题解决方案。
DeepSeek模型对硬件资源有明确要求,建议采用以下配置:
典型场景配置示例:
# 推理服务器配置(单机单卡)lscpu | grep "Model name" # 确认CPU型号nvidia-smi -L # 验证GPU识别free -h # 检查内存可用性
推荐使用Ubuntu 22.04 LTS或CentOS 7.9,需注意:
sudo setenforce 0sudo sed -i 's/SELINUX=enforcing/SELINUX=disabled/g' /etc/selinux/config
sudo apt install chrony # Ubuntusudo systemctl enable --now chronyd
# 确认显卡型号ubuntu-drivers devices# 安装推荐驱动sudo ubuntu-drivers autoinstall
# 下载对应版本(以11.8为例)wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pinsudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda-repo-ubuntu2204-11-8-local_11.8.0-1_amd64.debsudo dpkg -i cuda-repo-ubuntu2204-11-8-local_11.8.0-1_amd64.debsudo apt-key add /var/cuda-repo-ubuntu2204-11-8-local/7fa2af80.pubsudo apt-get updatesudo apt-get -y install cuda
推荐使用conda管理环境:
# 安装Minicondawget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.shbash Miniconda3-latest-Linux-x86_64.sh# 创建专用环境conda create -n deepseek python=3.10conda activate deepseek# 安装PyTorch(根据CUDA版本选择)pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu118
从官方渠道下载模型权重文件(示例为简化路径):
mkdir -p ~/deepseek_modelscd ~/deepseek_modelswget [官方模型下载链接]/deepseek-67b.tar.gztar -xzvf deepseek-67b.tar.gz
git clone https://github.com/deepseek-ai/DeepSeek.gitcd DeepSeekpip install -e .# 安装额外依赖pip install transformers==4.35.0pip install bitsandbytes # 量化支持
# config.py 示例MODEL_PATH = "/home/user/deepseek_models/deepseek-67b"DEVICE = "cuda:0"BATCH_SIZE = 8MAX_SEQ_LEN = 2048
python serve.py --config config.py --port 8000
from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("deepseek-67b",load_in_8bit=True,device_map="auto")
# 使用DeepSpeed的3D并行os.environ["DEEPSPEED_ZERO_STAGE"] = "2"os.environ["NCCL_DEBUG"] = "INFO"# 启动多卡服务deepspeed --num_gpus=4 serve.py --deepspeed_config ds_config.json
# 修改主机文件echo "192.168.1.10 node1" >> /etc/hostsecho "192.168.1.11 node2" >> /etc/hosts# 配置SSH免密登录ssh-keygen -t rsassh-copy-id node2
sudo fallocate -l 64G /swapfilesudo chmod 600 /swapfilesudo mkswap /swapfilesudo swapon /swapfile# 永久生效echo '/swapfile none swap sw 0 0' | sudo tee -a /etc/fstab
from transformers import AutoModelForCausalLMmodel = AutoModelForCausalLM.from_pretrained("deepseek-67b",device_map="auto",offload_directory="/tmp/offload",offload_state_dict=True)
# 查看已安装CUDAnvcc --version# 降级CUDA示例sudo apt install --allow-downgrades cuda-11-7# 符号链接修复sudo ln -sf /usr/local/cuda-11.7 /usr/local/cuda
# 安装Prometheus Node Exportersudo apt install prometheus-node-exporter# 配置Grafana看板docker run -d --name=grafana -p 3000:3000 grafana/grafana
# Kubernetes HPA配置示例apiVersion: autoscaling/v2kind: HorizontalPodAutoscalermetadata:name: deepseek-hpaspec:scaleTargetRef:apiVersion: apps/v1kind: Deploymentname: deepseek-deploymentminReplicas: 2maxReplicas: 10metrics:- type: Resourceresource:name: cputarget:type: UtilizationaverageUtilization: 70
本指南系统梳理了DeepSeek本地部署的全流程,从硬件选型到生产级优化均提供可落地方案。实际部署时建议先在测试环境验证配置,再逐步扩展至生产集群。对于超大规模部署(>100节点),建议结合Kubernetes Operator实现自动化运维。