简介:本文详细介绍如何在Django项目中集成DeepSeek大模型,涵盖环境配置、API调用、功能实现及优化策略,助力开发者快速构建智能Web应用。
在人工智能技术快速发展的今天,将大语言模型(LLM)集成至Web框架已成为企业提升应用智能化的重要手段。Django作为Python生态中最成熟的Web框架之一,其”开箱即用”的设计理念与DeepSeek大模型的强大文本处理能力形成完美互补。
pip install django requests python-dotenv # 基础依赖pip install django-rest-framework # 如需构建API接口
建议采用分层架构:
project/├── ai_services/ # AI相关服务│ ├── deepseek/│ │ ├── client.py # API客户端│ │ └── utils.py # 辅助工具├── core/ # 核心业务逻辑├── templates/ # 前端模板└── settings.py # 配置文件
# ai_services/deepseek/client.pyimport requestsfrom django.conf import settingsfrom requests.exceptions import RequestExceptionclass DeepSeekClient:def __init__(self):self.api_key = settings.DEEPSEEK_API_KEYself.base_url = settings.DEEPSEEK_API_BASEdef _build_headers(self):return {'Authorization': f'Bearer {self.api_key}','Content-Type': 'application/json'}async def ask(self, prompt: str, model: str = 'deepseek-chat', temperature: float = 0.7):url = f"{self.base_url}/v1/chat/completions"data = {'model': model,'messages': [{'role': 'user', 'content': prompt}],'temperature': temperature}try:async with aiohttp.ClientSession() as session:async with session.post(url,json=data,headers=self._build_headers()) as resp:return await resp.json()except RequestException as e:# 实现自定义异常处理raise DeepSeekAPIError(f"API请求失败: {str(e)}")
# core/views.pyfrom django.http import JsonResponsefrom django.views import Viewfrom ai_services.deepseek.client import DeepSeekClientimport asyncioclass DeepSeekView(View):async def post(self, request):prompt = request.POST.get('prompt')if not prompt:return JsonResponse({'error': '缺少prompt参数'}, status=400)client = DeepSeekClient()try:response = await client.ask(prompt)return JsonResponse({'answer': response['choices'][0]['message']['content']})except Exception as e:return JsonResponse({'error': str(e)}, status=500)
# project/urls.pyfrom django.urls import pathfrom core.views import DeepSeekViewurlpatterns = [path('api/ai/deepseek/', DeepSeekView.as_view(), name='deepseek-api'),]
# 修改后的client.py方法async def ask_stream(self, prompt: str):url = f"{self.base_url}/v1/chat/completions"data = {...} # 同上async with aiohttp.ClientSession() as session:async with session.post(url, json=data, headers=self._build_headers()) as resp:async for chunk in resp.content.iter_chunked(1024):# 解析SSE格式数据yield chunk.decode('utf-8')
# 添加会话管理类class DeepSeekSession:def __init__(self, user_id):self.user_id = user_idself.context = []def add_message(self, role, content):self.context.append({'role': role, 'content': content})def get_prompt(self, new_message):combined = self.context.copy()combined.append({'role': 'user', 'content': new_message})return combined
# 使用Django缓存框架from django.core.cache import cachesclass CachedDeepSeekClient(DeepSeekClient):def __init__(self):super().__init__()self.cache = caches['deepseek']async def ask(self, prompt, **kwargs):cache_key = f"ds:{hash(prompt)}:{kwargs.get('model')}"cached = await self.cache.get(cache_key)if cached:return cachedresult = await super().ask(prompt, **kwargs)await self.cache.set(cache_key, result, timeout=300)return result
# tests/test_deepseek.pyfrom django.test import TestCase, override_settingsfrom ai_services.deepseek.client import DeepSeekClientimport asyncio@override_settings(DEEPSEEK_API_KEY='test-key')class DeepSeekTestCase(TestCase):@patch('requests.post')def test_api_call(self, mock_post):mock_post.return_value.json.return_value = {'choices': [{'message': {'content': 'test response'}}]}client = DeepSeekClient()loop = asyncio.new_event_loop()response = loop.run_until_complete(client.ask('test'))self.assertEqual(response['choices'][0]['message']['content'], 'test response')
# 在client.py中添加重试机制from tenacity import retry, stop_after_attempt, wait_exponentialclass ResilientDeepSeekClient(DeepSeekClient):@retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1))async def ask(self, prompt, **kwargs):return await super().ask(prompt, **kwargs)
实现内容安全过滤器:
from django.core.exceptions import ValidationErrordef validate_ai_output(text):forbidden_words = ['敏感词1', '敏感词2']if any(word in text for word in forbidden_words):raise ValidationError("输出包含违规内容")return text
通过以上系统化的集成方案,Django开发者可以快速将DeepSeek的强大AI能力融入Web应用,在保持框架原有优势的同时,大幅提升应用的智能化水平。实际开发中,建议从核心功能开始逐步扩展,结合业务场景进行深度定制,最终实现技术与业务的完美融合。