简介:本文详细介绍如何利用Flutter 3.32、DeepSeek大模型、Dio网络库及Markdown渲染技术,构建支持Windows平台的流式输出AI交互模板,涵盖环境配置、核心组件实现、性能优化等全流程。
win32
插件集成能力,优化了文本渲染性能,为流式输出提供稳定基础。Interceptor
机制实现请求/响应拦截,配合StreamTransformer
处理分块数据,是流式传输的关键组件。flutter_markdown
包,支持GitHub Flavored Markdown语法,实现富文本展示与代码块高亮,增强交互体验。
graph TD
A[用户输入] --> B[Flutter UI层]
B --> C[Dio请求封装]
C --> D[DeepSeek流式API]
D --> E[SSE数据分块]
E --> F[Dio流处理]
F --> G[Markdown解析]
G --> H[UI动态渲染]
flutter channel stable
flutter upgrade 3.32.0
flutter config --enable-windows-desktop
flutter doctor
确保无警告项在pubspec.yaml
中添加核心依赖:
dependencies:
flutter:
sdk: flutter
dio: ^5.3.3 # 网络请求库
flutter_markdown: ^0.6.18 # Markdown渲染
rxdart: ^0.27.7 # 响应式编程辅助
win32: ^5.0.7 # Windows原生API访问
class StreamInterceptor extends Interceptor {
@override
void onRequest(RequestOptions options, RequestInterceptorHandler handler) {
options.headers['Accept'] = 'text/event-stream';
handler.next(options);
}
@override
void onResponse(Response response, ResponseInterceptorHandler handler) {
if (response.isRedirect) {
final newUrl = response.redirects!.last.location;
// 处理重定向逻辑
}
handler.next(response);
}
}
Stream<String> parseSSEStream(Stream<List<int>> byteStream) {
const String dataPrefix = 'data: ';
return byteStream
.transform(utf8.decoder)
.transform(const LineSplitter())
.where((line) => line.startsWith(dataPrefix))
.map((line) => line.substring(dataPrefix.length).trim())
.where((data) => data.isNotEmpty);
}
Map<String, dynamic> buildDeepSeekPayload(String prompt) {
return {
'model': 'deepseek-chat',
'messages': [
{'role': 'user', 'content': prompt}
],
'stream': true,
'temperature': 0.7,
'max_tokens': 2000
};
}
Future<void> fetchStreamResponse(String prompt,
void Function(String) onData) async {
final dio = Dio()..interceptors.add(StreamInterceptor());
try {
final response = await dio.post(
'https://api.deepseek.com/v1/chat/completions',
data: buildDeepSeekPayload(prompt),
options: Options(
receiveTimeout: const Duration(seconds: 30),
),
);
if (response.statusCode == HttpStatus.ok) {
final byteStream = response.data as Stream<List<int>>;
parseSSEStream(byteStream).listen(onData);
}
} on DioError catch (e) {
debugPrint('API Error: ${e.response?.data}');
}
}
MarkdownBody buildMarkdownBody(String content) {
return MarkdownBody(
data: content,
styleSheet: MarkdownStyleSheet(
p: TextStyle(fontSize: 16),
code: TextStyle(
fontFamily: 'Courier New',
backgroundColor: Colors.grey[100],
),
),
selectable: true,
physics: const BouncingScrollPhysics(),
);
}
// 在pubspec.yaml中添加依赖
// flutter_highlight: ^0.7.0
HighlightView buildCodeBlock(String code, {String language = 'dart'}) {
return HighlightView(
code,
language: language,
theme: atomOneDarkTheme,
padding: const EdgeInsets.all(8),
textStyle: const TextStyle(fontSize: 14),
);
}
receiveBufferSize
为8192字节,平衡延迟与吞吐量RxDart
的throttle
操作符控制UI更新频率
streamController.stream
.throttle(const Duration(milliseconds: 100))
.listen((data) => _updateUI(data));
StreamSubscription
的取消机制:void dispose() {
_subscription?.cancel();
super.dispose();
}
## 4.3 渲染性能优化
- 对长文本实现虚拟滚动:
```dart
ListView.builder(
itemCount: _chunks.length,
itemBuilder: (context, index) => MarkdownBody(data: _chunks[index]),
controller: _scrollController,
)
int WINAPI WinMain(HINSTANCE hInstance, …) {
SetProcessDPIAware(); // 启用DPI感知
// 其余初始化代码…
}
2. 生成MSIX安装包:
```bash
flutter build windows --release
flutter pub run msix:create
测试场景 | 预期结果 | 验证方法 |
---|---|---|
网络中断恢复 | 自动重连并继续输出 | 手动断开WiFi观察行为 |
特殊字符处理 | 正确渲染Markdown转义字符 | 输入**加粗** 测试 |
长文本性能 | 滚动流畅无卡顿 | 输入5000字长文本测试 |
class DeepSeekClient implements AIClient {
@override
Stream
// DeepSeek特有实现
}
}
```
hive
或sqflite
实现对话历史存储package_info
实现动态功能扩展本方案通过Flutter 3.32的跨平台能力,结合DeepSeek的流式API、Dio的高效网络处理及Markdown的富文本展示,构建出响应迅速、交互自然的Windows端AI应用模板。实际开发中需特别注意SSE连接的稳定性测试,建议在不同网络环境下进行压力测试,确保连续输出10,000字符以上不中断。