简介:本文为零基础用户提供DeepSeek模型本地化部署的详细教程,涵盖环境配置、模型下载、依赖安装及推理测试全流程,助力开发者3分钟内完成AI模型本地化部署。
DeepSeek作为开源AI模型,其本地化部署能解决三大核心痛点:
conda create -n deepseek python=3.10conda activate deepseek
wget https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/cuda-ubuntu2204.pinsudo mv cuda-ubuntu2204.pin /etc/apt/preferences.d/cuda-repository-pin-600sudo apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/3bf863cc.pubsudo add-apt-repository "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2204/x86_64/ /"sudo apt-get updatesudo apt-get -y install cuda-12-2
# 使用官方镜像或直接下载wget https://deepseek-models.s3.amazonaws.com/deepseek-v1.5b.bin# 验证文件完整性sha256sum deepseek-v1.5b.bin | grep "预期哈希值"
# 通过pip安装核心依赖pip install torch==2.0.1 transformers==4.30.2 accelerate==0.20.3# 安装优化工具包pip install onnxruntime-gpu bitsandbytes
from transformers import AutoModelForCausalLM, AutoTokenizerimport torch# 加载模型(支持量化)model = AutoModelForCausalLM.from_pretrained("./deepseek-v1.5b",torch_dtype=torch.float16,device_map="auto")tokenizer = AutoTokenizer.from_pretrained("./deepseek-v1.5b")# 推理示例inputs = tokenizer("解释量子计算的基本原理", return_tensors="pt")outputs = model.generate(**inputs, max_length=50)print(tokenizer.decode(outputs[0], skip_special_tokens=True))
bitsandbytes库减少显存占用
from bitsandbytes.nn import Linear8bitLtmodel = AutoModelForCausalLM.from_pretrained("./deepseek-v1.5b",load_in_8bit=True,device_map="auto")
from accelerate import init_empty_weights, load_checkpoint_and_dispatchwith init_empty_weights():model = AutoModelForCausalLM.from_pretrained("deepseek-v1.5b")model = load_checkpoint_and_dispatch(model,"./deepseek-v1.5b",device_map="auto",no_split_module_classes=["OPTDecoderLayer"])
outputs = model.generate(inputs,max_length=50,use_cache=True # 启用KV缓存)
batch_inputs = tokenizer(["问题1", "问题2"], return_tensors="pt", padding=True)outputs = model.generate(**batch_inputs)
batch_size参数model.gradient_checkpointing_enable()torch.cuda.empty_cache()清理缓存
from transformers import Trainer, TrainingArguments# 准备领域数据集dataset = load_dataset("json", data_files="medical_qa.json")# 微调配置training_args = TrainingArguments(output_dir="./fine_tuned",per_device_train_batch_size=4,num_train_epochs=3,learning_rate=2e-5,)trainer = Trainer(model=model,args=training_args,train_dataset=dataset["train"],)trainer.train()
# 使用FastAPI创建API服务from fastapi import FastAPIfrom pydantic import BaseModelapp = FastAPI()class Query(BaseModel):prompt: str@app.post("/generate")async def generate_text(query: Query):inputs = tokenizer(query.prompt, return_tensors="pt")outputs = model.generate(**inputs)return {"response": tokenizer.decode(outputs[0])}
通过本教程,开发者可在3分钟内完成从环境搭建到模型推理的全流程。实际部署中,建议先在测试环境验证,再逐步迁移到生产环境。对于企业级应用,可考虑结合Kubernetes实现弹性扩展,或使用Triton推理服务器优化多模型调度。