批量预测服务 批量预测是一种进行批量数据推理的方式。用户可以上传批量数据进行推理,在数据处理完成后自动停止。支持设置定时循环任务。 批量预测服务的入口在公有云部署的tab下,点击新建预测即可进入填写批量预测服务的详细表单。 批量预测中提供了定时运行的服务,在填写表单中您可以按照任务需求,按照分钟、小时、天、周、月的维度设置任务间隔周期,发起定时运行任务。 完成表单填写点击提交即可发起一个新的批量预
创建NLP任务 一个项目是指对应的一个场景或者领域的问题,例如智能客服场景、智能教育场景等。在BML中,提供了文本分类单标签、文本分类多标签、短文本相似度、序列标注、文本实体抽取任务的模型训练能力。本章节将通过演示,如何创建一个自然语言处理任务来完成问文本分类的任务。 在BML的控制面板左侧,打开【预制模型调参】,并点击内容主板的“新建”按钮: 在弹出的个人信息表中,填写对应的个人信息,有效的个人
012-预测组件 预测组件 特征工程预测 特征工程预测是专门用于特征工程组件模型预测的组件,特征工程组件中生成模型的算法都可以采用该组件进行预测操作。 输入 输入Python 模型和预测数据集。 输出 输出Python模型预测结果数据集。 预测组件 预测组件是专门用于算法组件模型预测的组件,算法组件产出的模型可以采用该组件进行预测操作。 输入 输入Python 模型和预测数据集。 输出 输出Pyt
创建视觉任务 在任务列表点击【创建项目】,在弹窗中提交以下信息完成项目创建: 完善个人信息 :填写项目归属、行业、联系方式完成项目创建。 注意:有效的联系方式将有助于后续模型上线的人工快速审核,以及更快的百度官方支持 提交项目信息 :提交模型名称、技术方向、任务类型、应用场景及功能描述,即可完成项目创建。其中 任务类型与配置任务可选的数据类型一一对应 。
配置休眠策略 公有云部署支持休眠策略,从而实现服务的自动休眠,以帮助用户减少支出。 前提条件 已创建的在线服务支持配置休眠策略。 操作步骤 在左侧导航栏中选择“模型部署”>“公有云部署”。 在服务列表页中,单击已创建服务所在行的“设置休眠策略”。 配置休眠策略,如下图所示: 单击“确定”完成配置。
创建训练作业 创建训练作业 前提条件 自定义作业需要依赖于BOS对象存储读取输入文件,创建自定义作业之前需要保证您已经开通了BOS对象存储的服务。 授权自定义作业读写您的BOS对象存储,以顺利进行自定义作业的配置。 在BOS中存储创建Bucket,并且存储用于训练的代码文件和数据集,创建一个空文件夹用于输出文件的存储 新建作业 在导航栏选择『自定义作业-训练作业』,进入训练作业的列表页。 点击『新
002-开始训练 运行 您在画布中配置好算子组件以及参数后,需点击画布上方的“运行”按钮,一键训练模型。
运行NNIE引擎报错 std::bad_alloc 检查开发板可用内存,一些比较大的网络占用内存较多,推荐内存500M以上 8.
平台去重策略 平台提供了可去重的数据集,即对您上传的数据进行重复样本的去重。注意:当您确定了数据集为去重或非去重的属性后,便不可修改。 当您创建了一个去重的数据集时,在后续上传数据的过程中,平台可通过检验您当前上传的样本与已上传到此数据集下的样本是否相同,如果相同,则会使用新的样本替代旧的样本。
对数平均采样:参数范围中填写搜索参数的上下界,算法在其对数尺度上随机取值,该参数类型适用于学习率等参数范围有尺度差异的超参数。 资源配置 BML提供CPU和GPU两类训练机型。