如有授权年限、设备上限数的更多需求,请 提交工单 联系我们。 说明: 1、按产品线授权的序列号适用于开发手机APP,序列号仅限在绑定的包名下使用 2、如同一模型需同时购买iOS和Android包名的授权,需按2个产品线购买
文本分类数据标注说明 文本标注 上传未标注文本后,进入到标注页面,您可以逐一查看每一篇未标注的文本,如下图: 设定分类对应的标签 创建标签后,即可以进行对文本的标注,在文本的上方标签字段处,会显示对应的分类标签,完成标注
Blackhole 1.0.0 Blackhole 1.0.0 Blackhole是百度自研的高性能数据科学引擎,CodeLab中内嵌了该引擎。通过异构加速计算、超大数据处理、高效数据存储等技术,单机Blackhole在数据分析和机器学习等场景相比开源Pandas/Sklearn性能可提升7倍以上、拥有TB级的单机超大数据处理能力,同时提供和Pandas、Sklearn基本一致的易用接口。参考文档
TensorFlow 1.13.2 TensorFlow 基于tensorflow框架的MNIST图像分类任务示例代码,训练数据集点击 这里 下载 单机训练(计算节点数为1),示例代码如下: import os import tensorflow as tf import numpy as np from tensorflow import keras layers = tf . layers t
003-查看模型特征溯源 可视化建模提供特征溯源功能,对模型可用特征进行可视化溯源。 如果数据集组件到算法组件的路径中仅包含“数据处理组件(除‘Python数据处理组件’)”或“特征工程组件(除‘Python特征工程组件’)”,则可以生成特征溯源信息。 算法组件运行成功后,点击鼠标右键,选择“特征溯源”查看。 在弹出的界面中选择需要查看的特征名称,查看对应的溯源信息。
在BML使用外部镜像 资源池中除了可以关联容器镜像服务CCR外,用户也可以在资源池的镜像仓库中管理外部镜像。支持使用外部镜像的服务包括: 作业建模 在线服务 预测服务 外部镜像添加步骤 点击平台管理,进入资源池管理。 点击列表页的镜像仓库,进入镜像仓库列表中。 点击添加镜像仓库,用户输入外部镜像的镜像地址和账号密码后,即保存在该资源池下的镜像仓库列表中。 使用外部镜像 在训练作业、自动搜索作业、在
XGBoost 1.3.1 XGBoost XGBoost框架下,自定义作业支持发布保存模型为 pickle 和 joblib 格式,并且在发布至模型仓库时需要选择相应的模型文件。使用下面代码进行模型训练时,训练程序可以自行加载数据,训练数据选择空文件夹即可。 pickle格式示例代码 # -*- coding:utf-8 -*- xgboost train demo import
TensorFlow 2.3.0 TensorFlow 基于tensorflow框架的MNIST图像分类任务示例代码,训练数据集点击 这里 下载 单机训练(计算节点数为1),示例代码如下: tf train demo import tensorflow as tf import os mnist = tf . keras . datasets . mnist work_path =
文本实体抽取数据导入 1. 创建数据集 您可以在左侧导航栏中中,选择“数据总览”并点击主内容区域的按钮「创建数据集」,选择数据类型为“文本”,标注类型选择“文本实体抽取”。标注模板中使用默认选项”文本实体抽取“。 img 2.导入未标注文本数据 进入到新创建的文本实体抽取数据集中。如果您手中的数据是未标注数据,可以选择数据标注状态为“无标注信息”。平台暂不支持上传有标注信息的数据。 img 本地上
图像分类数据标注说明 目录 标注操作说明 标注技巧说明 上传图片 标注操作说明 在数据集查看详情页面可以点击开始标注,进入到标注页面。 添加标签 点击右侧添加标签,输入不同分类名称,完成标签添加。 标签格式说明:目前平台标签名称只支持数据/字母/下划线,暂时不支持中文 标注方式 根据左侧选定的当前图片,在右侧标签列表选择标签即可完成标注。 点击下一张图片/切换图片即可完成保存 标注技巧说明 快速标