005-AutoML(自动调参) AutoML(自动调参) 为了帮助模型达到更精准的效果,平台支持自动调参。支持自动调参的组件有XGBoost二分类、XGBoost多分类、XGBoost回归等等。 点击“AutoML 按钮。 在弹出的“自动调参”页面中,选择对应的算法组件。 在调参配置中,设置数据拆分比例、网格拆分数、参数范围和调参方式等。 设置调参模型的评估标准。 点击“确定”,完成自动调参。
数据增强算子参考 适用于图像分类的数据增强算子 算子名 功能 ShearX 剪切图像的水平边 ShearY 剪切图像的垂直边 TranslateX 按指定距离(像素点个数)水平移动图像 TranslateY 按指定距离(像素点个数)垂直移动图像 Rotate 按指定角度旋转图像 AutoContrast 自动优化图像对比度 Contrast 调整图像对比度 Invert 将图像转换为反色图像 Eq
013-模型评估组件 模型评估组件 二分类评估 评估模块支持计算 AUC、KS 及 F1 score,同时输出数据用于画 PR 曲线、ROC 曲线、KS 曲线、LIFT chart、Gain chart,同时也支持分组评估。 输入 最多可输入4个数据集,用户需要选择原始标签列、预测标签列和正样本标签值,还可以提供scoreColumn获得更多指标。 输出 第一个输出是summary数据集,第二个输
006-组件列选择 在选择特征列或标签列时,支持单独勾选与批量选择的方式选择数据列,支持搜索查找数据列。 当需要选择的数据列比较少时,可以直接勾选数据列进行选择。 当数据列比较多时,点击【批量操作】后,选择需要的数据列,将数据列从左侧列表移动到右侧列表,点击确定即可, 数据列已经按照字段类型进行了分类 。 如果只需要在大量数据列中找某个数据列,则可以使用搜索查找,直接在搜索框输入字段信息即可。
008-组件资源配置 在画布中,拖拽组件后,需为组件配置对应的资源。 Spark运行参数 Spark任务中包含Driver和Executor,关系为一对多,您需要分别对Driver和Executor进行资源配置。 参数名称 是否必选 参数描述 Driver 运行环境 是 平台提供两种资源套餐可供选择 Executor 运行环境 是 平台提供两种资源套餐可供选择 Python单机算子配置 Pytho
配置AB测试版本 BML在线服务中,同一服务支持同时部署两个模型上线,并且可以自由的调节流量分配占比 前提条件 已创建的在线服务,处于 运行中 状态时,允许添加一个AB测试版本模型上线 操作步骤 在左侧导航栏中选择“模型部署”>“在线服务” 服务列表中,对于处于 运行中 状态的服务,点击 新增版本 ,添加AB测试版本 配置AB测试版本模型,包括流量占比和资源配置 点击部署,完成部署后,该服务下将有
服务器部署价格说明 目前BML脚本调参任务已支持将定制模型部署在本地服务器上,只需在发布模型时提交本地服务器部署申请,通过审核后即可获得一个月免费试用。 目前已支持在 控制台 在线按设备使用年限购买授权。 价格参考 部署类型 按年授权价格( 每个模型每年在每个设备 ) 永久授权价格(每个模型在每个设备) 本地服务器SDK 10000元 50000元 本地服务器API 10000元 50000元 注
如何发布私有API 训练完毕后,可以在左侧导航栏中找到【EasyEdge本地部署】,选择通用【服务器】,点击【发布新服务】,进入发布界面。 step1.部署方式选择服务器,集成方式选择私有API后,选择需要发布的模型及版本,上传指纹文件,勾选业务场景需要的操作系统与硬件芯片。设置完毕点击下一步 step2. 填写完基本信息之后,点击 提交 ,即可申请将模型封装成可离线计算的部署包,申请通过后,即可
导入已标注数据 目录 导入已标注数据方式说明 从已有数据集导入已标注数据 查看已标注数据 导入已标注数据方式说明 如果您已有标注好的数据,支持快速导入到BML,方便直接进入后续训练环节。 实例分割任务向选定的数据集导入已标注好的数据目前支持一种方式: 将其他数据集已经标注好的数据导入 从已有数据集导入已标注数据 从已有数据集导入已标注数据,支持选择数据集及导入的具体标签进行导入。 查看已标注数据
创建表格预测任务 在任务列表点击【创建项目】,在弹窗中提交以下信息完成项目创建: 完善个人信息 :填写项目归属、行业、联系方式完成项目创建。 注意:有效的联系方式将有助于后续模型上线的人工快速审核,以及更快的百度官方支持 提交项目信息 :提交模型名称、技术方向、任务类型、应用场景及功能描述,即可完成项目创建。其中 任务类型与配置任务可选的数据类型一一对应 。