图像分类模型如何提升效果 一个模型很难一次性就训练到最佳的效果,可能需要结合模型评估报告和校验结果不断扩充数据和调优。 为此我们设计了模型迭代功能,即当模型训练完毕后,会生成一个最新的版本号,首次V1、之后V2……以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 注意:如果模型已经是上线状态(包括已付费的模型服务),依然支持模型迭代。
图像分割模型如何提升效果 一个模型很难一次性就训练到最佳的效果,可能需要结合模型评估报告和校验结果不断扩充数据和调优。 为此我们设计了模型迭代功能,即当模型训练完毕后,会生成一个最新的版本号,首次V1、之后V2……以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 注意:如果模型已经是上线状态(包括已付费的模型服务),依然支持模型迭代。
物体检测模型如何提升效果 一个模型很难一次性就训练到最佳的效果,可能需要结合模型评估报告和校验结果不断扩充数据和调优。 为此我们设计了模型迭代功能,即当模型训练完毕后,会生成一个最新的版本号,首次V1、之后V2……以此类推。可以通过调整训练数据和算法,多次训练,获得更好的模型效果。 注意:如果模型已经是上线状态(包括已付费的模型服务),依然支持模型迭代。
如何获取物体检测软硬一体产品 为进一步提升前端智能计算的用户体验,EasyDL推出了多款软硬一体方案。将高性能硬件与EasyDL图像分类/物体检测模型深度适配,可应用于工业分拣、视频监控等多种设备端离线计算场景,让离线AI落地更轻松。
更多参考 EasyDL官网入口 EasyDL开发文档
如何获取图像分类软硬一体产品 为进一步提升前端智能计算的用户体验,EasyDL推出了多款软硬一体方案。将高性能硬件与EasyDL图像分类/物体检测模型深度适配,可应用于工业分拣、视频监控等多种设备端离线计算场景,让离线AI落地更轻松。
如何提升模型效果 如何充分测试模型效果 模型校验 在查看模型评估报告基础上,首先使用模型校验功能测试 未参与过训练 的音频数据进行模型训练,在这一步尽量上传不同类别的数据充分测试,并在测试过程中线下记录识别错误的音频。在测试过程中需要关注以下内容: 不同分类的准确率是否存在明显差异 识别错误的音频是否存在一些共性?
如何发布自然语言处理任务API 模型仓库中的NLP模型,发布为公有云部署时运行在云端,可通过独立Rest API调用模型,实现AI能力与业务系统或硬件设备整合。 BML具有完善的鉴权、流控等安全机制,并配置丰富的资源集群稳定承载高并发请求。
如何获取视觉任务软硬一体产品 为进一步提升前端智能计算的用户体验,BML推出了多款软硬一体方案。将高性能硬件与BML脚本调参任务训练出的图像分类/物体检测模型深度适配,可应用于工业分拣、视频监控等多种设备端离线计算场景,让离线AI落地更轻松。 了解不同方案 方案获取流程如下: Step 1: 在BML脚本调参任务中训练专项适配所选硬件的图像分类/物体检测模型 ,迭代模型至效果满足业务要求。
如何使用Notebook SSH 功能 什么是SSH功能 如果您想要使用本地的开发环境,把任务提交到线上的资源运行。可以使用SSH连接的功能。 如何使用SSH功能 使用流程: 创建BLB、EIP 如果您需要使用Notebook SSH功能,您需要创建 EIP 。EIP为您提供公网带宽服务。