从本地导入模型 在新建版本时可以导入本地模型。 前提条件 已创建模型,且该模型的模型来源为“本地上传”。 操作步骤 在左侧导航栏中选择“模型仓库”>“模型管理”。 在模型列表页中,单击“来源”为“本地上传”的模型所在行的“新建版本”,进入“新建版本”页面。 根据页面提示填写相关信息以及上传文件: 对于图像分类、物体检测在上传文件时以及提交时进行文件校验,如校验出错,请根据提示进行修改。 对于表格数
创建表格预测任务 在任务列表点击【创建项目】,在弹窗中提交以下信息完成项目创建: 完善个人信息 :填写项目归属、行业、联系方式完成项目创建。 注意:有效的联系方式将有助于后续模型上线的人工快速审核,以及更快的百度官方支持 提交项目信息 :提交模型名称、技术方向、任务类型、应用场景及功能描述,即可完成项目创建。其中 任务类型与配置任务可选的数据类型一一对应 。
配置AB测试版本 BML在线服务中,同一服务支持同时部署两个模型上线,并且可以自由的调节流量分配占比 前提条件 已创建的在线服务,处于 运行中 状态时,允许添加一个AB测试版本模型上线 操作步骤 在左侧导航栏中选择“模型部署”>“在线服务” 服务列表中,对于处于 运行中 状态的服务,点击 新增版本 ,添加AB测试版本 配置AB测试版本模型,包括流量占比和资源配置 点击部署,完成部署后,该服务下将有
008-组件资源配置 在画布中,拖拽组件后,需为组件配置对应的资源。 Spark运行参数 Spark任务中包含Driver和Executor,关系为一对多,您需要分别对Driver和Executor进行资源配置。 参数名称 是否必选 参数描述 Driver 运行环境 是 平台提供两种资源套餐可供选择 Executor 运行环境 是 平台提供两种资源套餐可供选择 Python单机算子配置 Pytho
007-异常检测算法 异常检测算法 IsolationForest 在高维数据集中实现异常值检测的一种有效方法是使用随机森林。隔离森林(IsolationForest)通过随机选择特征然后随机选择所选特征的最大值和最小值之间的分割值来隔离观测。 由于递归划分可以由树形结构表示,因此隔离样本所需的分割次数等同于从根节点到终止节点的路径长度。 在这样的随机树的森林中取平均的路径长度作为决策量度。 随机
序列标注标注说明 1.标注体系说明 在序列标注任务中,一般会定义一个标签集合,来表示所有可能取到的预测结果。 标签是对字符串的token序列进行的表示: 对于英文字符串而言,token可以是一个单词(e.g. baidu),也可以是一个字符(e.g. b); 对于中文字符串而言,token可以是一个分词后的词语,也可以是单个汉字字符; 当前平台支持主流的IOB、IO、IOE、IOBES四种标注体系
005-AutoML(自动调参) AutoML(自动调参) 为了帮助模型达到更精准的效果,平台支持自动调参。支持自动调参的组件有XGBoost二分类、XGBoost多分类、XGBoost回归等等。 点击“AutoML 按钮。 在弹出的“自动调参”页面中,选择对应的算法组件。 在调参配置中,设置数据拆分比例、网格拆分数、参数范围和调参方式等。 设置调参模型的评估标准。 点击“确定”,完成自动调参。
批量预测计费说明 批量预测服务的计费方式类似于模型训练模块,具体计费规则如下: 未开通付费时,仅支持使用免费额度,免费额度用完即停止训练任务。 开通付费后,优先消耗免费额度,免费额度用完后自动转为按量后付费 按分钟计费,不足1分钟按1分钟计。 在任务结束后统一扣费,任务运行中欠费不会中断任务。 使用 BML 前需保证账户无欠款。 计费公式:费用=训练机型单价×节点数×使用时长 时长计量方法:只包括
标准接口规范参考 脚本调参和Notebook训练方式产出的模型部署到公有云时,不同任务类型的应用接口的请求与响应均满足响应的标准规范。 图像分类-单图单标签 标准接口请求参考说明: 字段名称 必须 类型 说明 image 是 string 图像数据,base64编码,要求base64编码后大小不超过4M,最短边至少15px,最长边最大4096px,支持jpg/png/bmp格式 标准接口响应字段说
013-模型评估组件 模型评估组件 二分类评估 评估模块支持计算 AUC、KS 及 F1 score,同时输出数据用于画 PR 曲线、ROC 曲线、KS 曲线、LIFT chart、Gain chart,同时也支持分组评估。 输入 最多可输入4个数据集,用户需要选择原始标签列、预测标签列和正样本标签值,还可以提供scoreColumn获得更多指标。 输出 第一个输出是summary数据集,第二个输