从本地导入模型 在新建版本时可以导入本地模型。 前提条件 已创建模型,且该模型的模型来源为“本地上传”。 操作步骤 在左侧导航栏中选择“模型仓库”>“模型管理”。 在模型列表页中,单击“来源”为“本地上传”的模型所在行的“新建版本”,进入“新建版本”页面。 根据页面提示填写相关信息以及上传文件: 对于图像分类、物体检测在上传文件时以及提交时进行文件校验,如校验出错,请根据提示进行修改。 对于表格数
004-查看特征重要性 对于LR二分类、LR多分类、广义线性回归、XGBoost二分类、XGBoost多分类、XGBoost回归等算子组件,支持 在算子运行成功后 ,查看其重要特征。 实验运行成功后,鼠标右键点击相应的算子组件,如“XGboost多分类“,选择“查看特征重要性”,即可显示前50个重要的特征。 如需查看全部特征的特征重要性指标,可以点击弹框上方的“下载完整内容”,下载完整的特征重要性
超参数配置参考 超参来源 目前BML脚本调参任务类型支持三种方法配置任务中网络的超参数,你可以沿用「脚本编辑」中设定的超参数,为获取更高的模型精度,也可以选择「自动超参搜索」对网络的超参数进行搜索。选择「已有超参搜索结果」时,可以在预训练模型和预训练网络相同的任务中,复用自动超参搜索结果,高效地训练出高精度模型。 自动超参搜索 在超参搜索的过程中,由于模型复杂、计算成本很高,且每个超参数都有较大的
Pytorch 1.7.1 Pytorch 训练代码 基于Pytorch框架的MNIST图像分类示例代码,数据集请点击 这里 下载。 单机训练时(计算节点等于1),示例代码如下: import argparse import torch import torch . nn as nn import torch . nn . functional as F import torch . optim
005-AutoML(自动调参) AutoML(自动调参) 为了帮助模型达到更精准的效果,平台支持自动调参。支持自动调参的组件有XGBoost二分类、XGBoost多分类、XGBoost回归等等。 点击“AutoML 按钮。 在弹出的“自动调参”页面中,选择对应的算法组件。 在调参配置中,设置数据拆分比例、网格拆分数、参数范围和调参方式等。 设置调参模型的评估标准。 点击“确定”,完成自动调参。
导入未标注数据 目录 导入未标注数据方式说明 从本地上传图片导入 从本地上传压缩包导入 导入线上已有数据集 导入未标注数据方式说明 为选定的实例分割数据集导入未标注数据(即原始图片)的方式有两种。一种为从本地选择图片文件;一种为从平台中其余同为图片类型数据集中导入。 从本地上传图片导入 选择 无标注数据-本地-上传图片 ,点击上传图片后选择本地图片文件进行导入。 数据格式要求 1、图片类型为jpg
创建表格预测任务 在任务列表点击【创建项目】,在弹窗中提交以下信息完成项目创建: 完善个人信息 :填写项目归属、行业、联系方式完成项目创建。 注意:有效的联系方式将有助于后续模型上线的人工快速审核,以及更快的百度官方支持 提交项目信息 :提交模型名称、技术方向、任务类型、应用场景及功能描述,即可完成项目创建。其中 任务类型与配置任务可选的数据类型一一对应 。
文字识别任务简介 文字识别模型类型 文字识别模型即是常说的OCR模型,预置模型调参目前提供了通用的全文本识别场景,可以应对常规的文字识别任务,且支持多种文字。 文字识别模型应用场景 纸质文档电子化 通用文字识别模型支持针对多语种的纸质文档进行电子化,开发者可以采集文档图片并标注,对模型进行训练,从而实现纸质文档的自动电子化,提升工作效率。 图像转文字 通用文字识别模型支持识别图像上的文字,开发者可
013-模型评估组件 模型评估组件 二分类评估 评估模块支持计算 AUC、KS 及 F1 score,同时输出数据用于画 PR 曲线、ROC 曲线、KS 曲线、LIFT chart、Gain chart,同时也支持分组评估。 输入 最多可输入4个数据集,用户需要选择原始标签列、预测标签列和正样本标签值,还可以提供scoreColumn获得更多指标。 输出 第一个输出是summary数据集,第二个输
配置AB测试版本 BML在线服务中,同一服务支持同时部署两个模型上线,并且可以自由的调节流量分配占比 前提条件 已创建的在线服务,处于 运行中 状态时,允许添加一个AB测试版本模型上线 操作步骤 在左侧导航栏中选择“模型部署”>“在线服务” 服务列表中,对于处于 运行中 状态的服务,点击 新增版本 ,添加AB测试版本 配置AB测试版本模型,包括流量占比和资源配置 点击部署,完成部署后,该服务下将有