在BML控制台申请、下载部署包后,可以参考 EasyPack-单机一键部署 将软件包部署在本地服务器上。部署成功后,启动服务,即可调用与在线API功能类似的接口。 授权说明 本地部署包根据服务器硬件(CPU单机或GPU单卡)进行授权,只能在申请时提交的硬件指纹所属的硬件上使用。
自然语言处理任务模型部署整体说明 训练完成后,可将模型部署在公有云服务器上,通过API进行调用。 公有云API 训练完成的模型存储在云端,可通过独立Rest API调用模型,实现AI能力与业务系统或硬件设备整合 具有完善的鉴权、流控等安全机制,GPU集群稳定承载高并发请求 支持查找云端模型识别错误的数据,纠正结果并将其加入模型迭代的训练集,不断优化模型效果
介绍 背景介绍 在边缘计算场景下,往往需要在同一个集群中管理多个边缘站点,每个边缘站点内可以有一个或多个计算节点。同时需要在每个边缘站点中都运行一组有业务逻辑联系的服务,每个站点内的服务具备一套完整的功能,可以为用户提供服务。但由于网络限制,有业务联系的服务之间不希望或者不能跨站点访问。
产品介绍 百度数据仓库 Palo (以下简称百度PALO)基于百度 PALO 团队开源的 Apache Doris 数据库构建的 MPP 架构云数据仓库,支持海量数据高效导入、实时更新,能够同时满足企业对报表与 OLAP 分析两类不同需求,能够以较低的成本提供在PB级别数据集上的高性能分析和报表查询功能。帮助企业快速且低成本地构建极速易用的云上数据分析平台。
PaddlePaddle 2.0.0rc Paddle 此处提供基于Paddle框架的MNIST图像分类示例代码,数据集请点击 这里 下载。 单机训练时(计算节点等于1),示例代码如下: II', lbpath.read(8)) labels = numpy.fromfile(lbpath, dtype=numpy.uint8) with open(image_path[:-3], 'rb') a
Pytorch 1.7.1代码规范 Pytorch 1.7.1代码规范 基于Pytorch 1.7.1框架的MNIST图像分类,训练数据集pytorch_train_data.zip点击 这里 下载。 如下所示是其超参搜索任务中一个超参数组合的训练代码,代码会通过argparse模块接受在平台中填写的信息,请保持一致。 特别注意,示例采用的是进化算法进行超参搜索,每个试验在训练时会继承之前试验的权
专项适配硬件部署价格说明 BML脚本调参图像分类,物体检测模型支持多种专项适配硬件方案,请前往 专题页面 对比不同方案的性能与价格,选择与业务场景最匹配的方案。 方案获取流程 Step 1:在BML训练专项适配硬件的图像分类/物体检测模型,迭代模型至效果满足业务需求 Step 2:发布模型时选择专项适配硬件的专用SDK,并在 AI市场 购买方案 Step 3:获得硬件和用于激活专用SDK的专用序列
tensorflow框架API调用文档 本文档主要说明使用TensorFlow框架训练的模型部署到公有云后获得的API如何使用,如有疑问可以通过以下方式联系我们: 在百度智能云控制台内 提交工单 进入 BML社区交流 ,与其他开发者进行互动 接口描述 基于TensorFlow深度学习框架训练出的模型,模型训练完毕,发布到模型仓库并部署到公有云后可获得定制API 接口鉴权 在BML-控制台创建应用
XGBoost框架API调用文档 本文档主要说明使用XGBoost框架训练的模型部署到公有云后获得的API如何使用,如有疑问可以通过以下方式联系我们: 在百度智能云控制台内 提交工单 进入 BML社区交流 ,与其他开发者进行互动 接口描述 基于XGBoost机器学习框架训练出的模型,模型训练完毕,发布到模型仓库并部署到公有云后可获得定制API 接口鉴权 在BML-控制台创建应用 应用列表获取AK/
图像分类导入已标注数据 目录 导入已标注数据方式说明 从本地导入已标注数据 从已有数据集导入已标注数据 查看已标注数据 导入已标注数据方式说明 如果您已有标注好的数据,可以在BML平台直接导入,方便直接进入后续训练环节。 向选定的数据集导入已标注好的数据有两种方式: 1、将单张图片和对应图片的标注信息以json格式上传 2、将BML其他数据集已经标注好的数据导入 从本地导入已标注数据 图像分类数据