AIAK- Training Pytorch版 AIAK-Training 简介 AI 加速套件AI Accelerate Kit是基于百度云 IAAS 资源推出的 AI 加速能力,可用来加速基于 PyTorch 等深度学习框架的 AI 应用,详情可进一步查看 AI加速套件-AIAK 简介 。 应用场景 AIAK-Training PyTorch版主要适用于计算机视觉模型,例如:Swin Tran
导入已标注数据 目录 导入已标注数据方式说明 从已有数据集导入已标注数据 查看已标注数据 导入已标注数据方式说明 如果您已有标注好的数据,支持快速导入到BML,方便直接进入后续训练环节。 实例分割任务向选定的数据集导入已标注好的数据目前支持一种方式: 将其他数据集已经标注好的数据导入 从已有数据集导入已标注数据 从已有数据集导入已标注数据,支持选择数据集及导入的具体标签进行导入。 查看已标注数据
004-查看特征重要性 对于LR二分类、LR多分类、广义线性回归、XGBoost二分类、XGBoost多分类、XGBoost回归等算子组件,支持 在算子运行成功后 ,查看其重要特征。 实验运行成功后,鼠标右键点击相应的算子组件,如“XGboost多分类“,选择“查看特征重要性”,即可显示前50个重要的特征。 如需查看全部特征的特征重要性指标,可以点击弹框上方的“下载完整内容”,下载完整的特征重要性
文字识别任务简介 文字识别模型类型 文字识别模型即是常说的OCR模型,预置模型调参目前提供了通用的全文本识别场景,可以应对常规的文字识别任务,且支持多种文字。 文字识别模型应用场景 纸质文档电子化 通用文字识别模型支持针对多语种的纸质文档进行电子化,开发者可以采集文档图片并标注,对模型进行训练,从而实现纸质文档的自动电子化,提升工作效率。 图像转文字 通用文字识别模型支持识别图像上的文字,开发者可
视觉预训练模型 图像分类模型 图像分类网络包含了基于飞桨深度学习平台模型库的十四种预训练网络,利用海量数据进行预训练,并且在ImageNet-2012数据集上进行了top-1准确率和cpu测试时间的测试。 详细测试数据 预训练模型 预训练网络 top-1准确率 cpu测试时间(ms) 模型特点 公开数据集常规预训练模型 EffcientNetB0_small 0.751 129 去掉SE模块的Ef
Sklearn 0.23.2 Sklearn sklearn框架下,自定义作业支持发布保存模型为 pickle 和 joblib 格式,并且在发布至模型仓库时需要选择相应的模型文件。使用下面代码进行模型训练时,训练程序可以自行加载数据,训练数据选择空文件夹即可。 pickle格式模型示例代码: # -*- coding:utf-8 -*- sklearn train demo im
并且支持查找云端模型识别错误的数据,纠正结果并将其加入模型迭代的训练集,不断优化模型效果 公有云部署 模型部署流程 将训练完成的模型发布到模型仓库,在模型仓库中的『版本列表』中点击『公有云部署』或者点击左侧导航栏的公有云部署,进入公有云部署界面后点击『部署模型』。
服务器部署价格说明 目前BML脚本调参任务已支持将定制模型部署在本地服务器上,只需在发布模型时提交本地服务器部署申请,通过审核后即可获得一个月免费试用。 目前已支持在 控制台 在线按设备使用年限购买授权。 价格参考 部署类型 按年授权价格( 每个模型每年在每个设备 ) 永久授权价格(每个模型在每个设备) 本地服务器SDK 10000元 50000元 本地服务器API 10000元 50000元 注
EdgeBoard系列硬件可直接应用于AI项目研发与部署,具有高性能、易携带、通用性强、开发简单等四大优点。 详细硬件参数请在 AI市场 浏览。
当天调用的数据暂不支持即时查看,可在第二天查看 将模型识别错误的数据加入指定数据集(建议新建数据集)并重新标注: Step 3 在新的训练任务中,通过加入上一步积累的数据来提升模型效果