图像分类导入已标注数据 目录 导入已标注数据方式说明 从本地导入已标注数据 从已有数据集导入已标注数据 查看已标注数据 导入已标注数据方式说明 如果您已有标注好的数据,可以在BML平台直接导入,方便直接进入后续训练环节。 向选定的数据集导入已标注好的数据有两种方式: 1、将单张图片和对应图片的标注信息以json格式上传 2、将BML其他数据集已经标注好的数据导入 从本地导入已标注数据 图像分类数据
图像分类导入未标注数据 目录 导入未标注数据方式说明 从本地上传图片导入 从本地上传压缩包导入 导入线上已有数据集 导入未标注数据方式说明 为选定的图像分类数据集导入未标注数据(即原始图片)的方式有两种。一种为从本地选择图片文件;一种为其余同为图片类型数据集中导入。 从本地上传图片导入 选择 未标注数据-本地-上传图片 ,点击上传图片后选择本地图片文件进行导入。 数据格式要求 1、图片类型为jpg
物体检测导入已标注数据 目录 导入已标注数据方式说明 从本地导入已标注数据 从已有数据集导入已标注数据 查看已标注数据 导入已标注数据方式说明 如果您已有标注好的数据,支持快速导入到BML,方便直接进入后续训练环节。 向选定的数据集导入已标注好的数据有两种方式: 1、将单张图片和对应图片的标注信息以json/xml格式上传 2、将BML中其他数据集已经标注好的数据导入 从本地导入已标注数据 物体检
PaddlePaddle 2.0.0rc Paddle 此处提供基于Paddle框架的MNIST图像分类示例代码,数据集请点击 这里 下载。 单机训练时(计算节点等于1),示例代码如下: II', lbpath.read(8)) labels = numpy.fromfile(lbpath, dtype=numpy.uint8) with open(image_path[:-3], 'rb') a
物体检测私有API集成文档 本文档主要说明定制化模型本地部署后,如何使用本地API。如还未训练模型,请先前往 BML 进行训练。 如有疑问可以通过以下方式联系我们: 在百度智能云控制台内 提交工单 进入 BML社区交流 ,与其他开发者进行互动 加入BML官方QQ群(群号:868826008)联系群管 部署包使用说明 BML定制化物体检测模型的本地部署通过EasyPack实现,目前提供单机一键部署的
私有化部署接口说明-文本分类 本文档主要说明定制化模型本地部署后,如何使用本地API。如还未训练模型,请先前往 BML 进行训练。 如有疑问可以通过以下方式联系我们: 在百度智能云控制台内 提交工单 进入 BML社区交流 ,与其他开发者进行互动 加入BML官方QQ群(群号:868826008)联系群管 部署包使用说明 BMLL定制化文本分类模型的本地部署通过EasyPack实现,目前提供单机一键部
图像分类LinuxSDK集成文档-Python 简介 本文档介绍 EasyDL 的 Linux Python SDK 的使用方法,适用于 EasyDL 通用版和BML。 网络类型支持:图像分类,物体检测 硬件支持: Intel Movidius MyRIAD2 / MyRIAD X / IGPU 瑞芯微 RK3399Pro 语言支持: Intel Movidius MyRIAD2 / MyRIAD
如何获取图像分类软硬一体产品 为进一步提升前端智能计算的用户体验,EasyDL推出了多款软硬一体方案。将高性能硬件与EasyDL图像分类/物体检测模型深度适配,可应用于工业分拣、视频监控等多种设备端离线计算场景,让离线AI落地更轻松。 了解不同方案 方案获取流程如下: Step 1:在EasyDL训练专项适配所选硬件的图像分类/物体检测模型,迭代模型至效果满足业务要求 Step 2:发布模型时选择
EasyDL图像软硬一体方案价格说明 目前EasyDL图像提供基于图像分类、物体检测任务的多种软硬一体方案,请前往 专题页面 对比不同方案的性能与价格,选择与业务场景最匹配的方案。 方案获取流程 Step 1:在EasyDL训练专项适配硬件的图像分类/物体检测模型,迭代模型至效果满足业务需求 Step 2:发布模型时选择专项适配硬件的专用SDK,并在 AI市场 购买方案 Step 3:获得硬件和用
4.汽车咨询网站文章自动推送 项目说明 业务背景 作为汽车资讯的应用网站,在汽车业务、汽车采购、汽车车友组织等方面有多年的垂类资讯行业积累,目前遇到的业务问题是,每天需要对百万量级的汽车资讯类内容进行快速发布,这些内容有来自于用户UGC的生产内容,有来自于平台、自运营频道打造的专项精品内容,也有来自于网络上针对定向网站定时抓取的内容。为保证资讯实时性,以上内容入库后需要根据标题快速推送到不同的专栏