EdgePredictorConfig 的具体使用方法可以参考开发工具包中的demo工程。 具体支持的运行参数可以参考开发工具包中的头文件。
满足推理阶段数据敏感性要求、更快的响应速度要求 支持iOS、Android、Linux、Windows四种操作系统,基础接口封装完善,满足灵活的应用侧二次开发 软硬一体方案 模型训练完成后,可前往AI市场购买EasyDL&EdgeBoard软硬一体方案 可应用于工业分拣、视频监控等多种设备端离线计算场景,让离线AI落地更轻松。 了解更多
TensorFlow 2.3.0 TensorFlow 基于tensorflow框架的MNIST图像分类任务示例代码,训练数据集点击 这里 下载 单机训练(计算节点数为1),示例代码如下: tf train demo import tensorflow as tf import os mnist = tf . keras . datasets . mnist work_path =
文本实体抽取数据导入 1. 创建数据集 您可以在左侧导航栏中中,选择“数据总览”并点击主内容区域的按钮「创建数据集」,选择数据类型为“文本”,标注类型选择“文本实体抽取”。标注模板中使用默认选项”文本实体抽取“。 img 2.导入未标注文本数据 进入到新创建的文本实体抽取数据集中。如果您手中的数据是未标注数据,可以选择数据标注状态为“无标注信息”。平台暂不支持上传有标注信息的数据。 img 本地上
Sklearn服务代码文件示例 Sklearn服务代码文件示例 在模型仓库中导入基于Sklearn库的机器学习模型时,除需导入模型文件外,也需要导入服务代码文件,其中服务代码文件用于在线部署模型时进行模型文件的加载以及进行必要的预处理和后处理逻辑。 Sklearn模型服务代码示例如下所示: #!/usr/bin/env python # -*- coding: utf-8 -*- # ******
通用类模型API参考 通用接口规范参考 自定义作业产出的模型进行公有云部署时,不具有统一的标准接口规范,根基不同的算法框架,提供通用接口规范参考。 Paddle:请在 《Paddle框架API调用文档》 中查看Paddle框架模型的API参考 TensorFlow:请在 《Tensorflow框架API调用文档》 中查看TensorFlow框架模型的API参考 Pytorch:请在 《Pytorc
Paddle框架API调用文档 本文档主要说明使用Paddle框架训练的模型部署到公有云后获得的API如何使用,如有疑问可以通过以下方式联系我们: 在百度智能云控制台内 提交工单 进入 BML社区交流 ,与其他开发者进行互动 接口描述 基于Paddle深度学习框架训练出的模型,模型训练完毕,发布到模型仓库并部署到公有云后可获得定制API 接口鉴权 在BML-控制台创建应用 应用列表获取AK/SK
图像智能标注介绍说明 使用智能标注功能可降低数据的标注成本。启动后,系统会从数据集所有图片中筛选出最关键的图片并提示需要优先标注。通常情况下,只需标注数据集30%左右的数据即可训练模型。与标注所有数据后训练相比,模型效果几乎等同 整体流程以物体检测的智能标注流程为例: 创建智能标注任务 启动物体检测数据集的智能标注前,请先检查一下是否已满足以下条件: 所有需要识别的标签都已创建 每个标签的标注框数
文本实体抽取数据标注 通过平台导入「无标注信息」的数据集后,可对无标注数据进行标注操作。 1. 创建标签 进入到待标注的数据集,您需要在右侧的标签栏中创建标签,点击「添加/搜索标签」后,即可输入标签名称,注意平台仅支持数字和字母的标签名 添加完标签后,可以添加标签的备注信息,如下图: 2.标注实体 您可以在文中划选需要标注的文本,然后在弹出的下落标签中选择需要标注的标签,如下图。也可以在划选文本后
在BML使用外部镜像 资源池中除了可以关联容器镜像服务CCR外,用户也可以在资源池的镜像仓库中管理外部镜像。支持使用外部镜像的服务包括: 作业建模 在线服务 预测服务 外部镜像添加步骤 点击平台管理,进入资源池管理。 点击列表页的镜像仓库,进入镜像仓库列表中。 点击添加镜像仓库,用户输入外部镜像的镜像地址和账号密码后,即保存在该资源池下的镜像仓库列表中。 使用外部镜像 在训练作业、自动搜索作业、在