在线活体检测

如果您对文档内容有任何疑问,可以通过以下几种方式联系我们:

  • 在百度智能云控制台内 提交工单,咨询问题类型请选择人工智能服务
  • 如有需要讨论的疑问,欢迎进入 AI社区 与其他开发者们一同交流。

能力介绍

接口能力

  • 人脸基础信息:包括人脸框位置,人脸空间旋转角度,人脸置信度等信息。
  • 人脸质量检测:判断人脸的遮挡、光照、模糊度、完整度等质量信息。可用于判断上传的人脸是否符合标准。
  • 基于图片的活体检测:基于单张图片,判断图片中的人脸是否为二次翻拍(举例:如用户A用手机拍摄了一张包含人脸的图片一,用户B翻拍了图片一得到了图片二,并用图片二伪造成用户A去进行识别操作,这种情况普遍发生在金融开户、实名认证等环节)。此能力可用于H5场景下的一些人脸采集场景中,增加人脸注册的安全性和真实性。

调用方式

请求URL数据格式

向API服务地址使用POST发送请求,必须在URL中带上参数access_token,可通过后台的API Key和Secret Key生成,具体方式请参考“Access Token获取”。

获取access_token的示例代码

注意access_token的有效期为30天,切记需要每30天进行定期更换,或者每次请求都拉取新token

例如此接口,使用HTTPS POST发送:

https://aip.baidubce.com/rest/2.0/face/v2/faceverify?access_token=24.f9ba9c5341b67688ab5added8bc91dec.2592000.1485570332.282335-8574075

POST中Body的参数,按照下方请求参数说明选择即可。

提示:如果您为百度智能云老用户,正在使用其他非AI的服务,可以参考百度智能云AKSK鉴权方式发送请求,虽然请求方式鉴权方法和本文所介绍的不同,但请求参数和返回结果一致。

请求说明

注意事项

  • 请求体格式化:Content-Type为application/x-www-form-urlencoded,通过urlencode格式化请求体。
  • Base64编码:请求的图片需经过Base64编码,图片的base64编码指将图片数据编码成一串字符串,使用该字符串代替图像地址。您可以首先得到图片的二进制,然后用Base64格式编码即可。需要注意的是,图片的base64编码是不包含图片头的,如data:image/jpg;base64,
  • 图片格式:现支持PNG、JPG、JPEG、BMP,不支持GIF图片

请求示例

HTTP方法:POST

请求URL: https://aip.baidubce.com/rest/2.0/face/v2/faceverify

URL参数:

参数
access_token 通过API Key和Secret Key获取的access_token,参考“Access Token获取

Header:

参数
Content-Type application/x-www-form-urlencoded

Body中放置请求参数,参数详情如下:

请求参数

参数 是否必选 类型 说明
image string base64编码后的图片数据,需urlencode,编码后的图片大小不超过2M
max_face_num uint32 最多处理人脸数目,默认值1
face_fields string 如不选择此项,返回结果默认只有人脸框、概率和旋转角度。可选参数为qualities、faceliveness。qualities:图片质量相关判断;faceliveness:活体判断。如果两个参数都需要选择,请使用半角逗号分隔。

返回参数

参数 类型 是否必须 说明
log_id uint64 日志id
result_num uint32 人脸数目
result object[] 人脸属性对象的集合
+faceliveness float 活体分数,face_fields包括qualities时返回
+location bject 人脸在图片中的位置
++left uint32 人脸区域离左边界的距离
++top uint32 人脸区域离上边界的距离
++width uint32 人脸区域的宽度
++height uint32 人脸区域的高度
+face_probability double 人脸置信度,范围0-1
+rotation_angle int32 人脸框相对于竖直方向的顺时针旋转角,[-180,180]
+yaw double 三维旋转之左右旋转角[-90(左), 90(右)]
+pitch double 三维旋转之俯仰角度[-90(上), 90(下)]
+roll double 平面内旋转角[-180(逆时针), 180(顺时针)]
+qualities object 人脸质量信息。face_fields包含qualities时返回
++occlusion object 人脸各部分遮挡的概率,区间[0, 1]
+++left_eye double 左眼
+++right_eye double 右眼
+++nose double 鼻子
+++mouth double
+++left_cheek double 左脸颊
+++right_cheek double 右脸颊
+++chin double 下巴
++blur double 人脸模糊程度,[0, 1]。0表示清晰,1表示模糊
++illumination double 取值范围在[0,255],表示脸部区域的光照程度
++completeness double 人脸完整度,[0, 1]。0表示完整,1表示不完整
++type object 真实人脸/卡通人脸置信度
+++human double 真实人脸置信度,[0, 1]
+++cartoon double 卡通人脸置信度,[0, 1]

返回示例

{
    log_id: 1900901488032821,
    result_num: 1,
    result: [
        {
            rotation_angle: 10,
            yaw: 11.357421875,
            faceliveness: 8.1253347161692e-05,
            location: {
                width: 96,
                top: 73,
                height: 96,
                left: 283
            },
            qualities: {
                illumination: 211,
                occlusion: {
                    right_eye: 0,
                    left_eye: 0.039751552045345,
                    left_cheek: 0.12623985111713,
                    mouth: 0,
                    nose: 0,
                    chin: 0.037661049515009,
                    right_cheek: 0.024720622226596
                },
                completeness: 1,
                type: {
                    cartoon: 0,
                    human: 0
                },
                blur: 2.5251445032182e-11
            },
            pitch: 1.0063140392303,
            roll: 12.760620117188,
            face_probability: 1
        }
    ]
}

活体阈值参考

请务必在产品侧做好以下条件限制

  • 检测的图片为二次采集,即通过相机当场拍摄,确保时间及操作条件的约束;
  • SDK输出的多帧情况,只要这些帧中,任何一张通过了阈值,即可判断为活体,建议可用三帧情况
  • 推荐分值采用99.5%

关于活体检测faceliveness的判断阈值选择,可参考以下数值信息

拒绝率(TRR) 误拒率(FRR) 通过率(TAR) 阈值(Threshold)
0.90325733 0.1% 99.9% 0.022403
0.96254072 0.5% 99.5% 0.393241(推荐
0.97557003 1% 99% 0.649192
0.98990228 2% 98% 0.933801
0.99446254 3% 97% 0.973637
0.99641694 4% 96% 0.988479
0.99739414 5% 95% 0.994058

关于以上数值的概念介绍

  • 拒绝率(TRR):如99%,代表100次作弊假体攻击,会有99次被拒绝。
  • 误拒率(FRR):如0.5%,指1000次真人请求,会有5次因为活体分数低于阈值被错误拒绝。
  • 通过率(TAR):如99%,指100次真人请求,会有99次因为活体分数高于阈值而通过。
  • 阈值(Threshold):高于此数值,则可判断为活体。

质量检测参考

指标 字段与解释 推荐数值界限
遮挡范围 occlusion,取值范围[0~1],0为无遮挡,1是完全遮挡
含有多个具体子字段,表示脸部多个部位
通常用作判断头发、墨镜、口罩等遮挡
left_eye : 0.6, #左眼被遮挡的阈值
right_eye : 0.6, #右眼被遮挡的阈值
nose : 0.7, #鼻子被遮挡的阈值
mouth : 0.7, #嘴巴被遮挡的阈值
left_check : 0.8, #左脸颊被遮挡的阈值
right_check : 0.8, #右脸颊被遮挡的阈值
chin_contour : 0.6, #下巴被遮挡阈值
模糊度范围 blur,取值范围[0~1],0是最清晰,1是最模糊 小于0.7
光照范围 illumination,取值范围[0~255]
脸部光照的灰度值,0表示光照不好
以及对应客户端SDK中,YUV的Y分量
大于40
姿态角度 Pitch:三维旋转之俯仰角度[-90(上), 90(下)]
Roll:平面内旋转角[-180(逆时针), 180(顺时针)]
Yaw:三维旋转之左右旋转角[-90(左), 90(右)]
分别小于20度
人脸完整度 completeness(0或1),0为人脸溢出图像边界,1为人脸都在图像边界内 视业务逻辑判断
人脸大小 人脸部分的大小
建议长宽像素值范围:80*80~200*200
人脸部分不小于100*100像素

人脸空间姿态角参考

姿态角分为PitchRollYaw,用于表示人脸在空间三维坐标系内的角度,常用于判断识别角度的界限值。

各角度阈值如下:

Pitch:三维旋转之俯仰角度,范围:[-90(上), 90(下)],推荐俯仰角绝对值不大于20度;
Roll:平面内旋转角,范围:[-180(逆时针), 180(顺时针)],推荐旋转角绝对值不大于20度;
Yaw:三维旋转之左右旋转角,范围:[-90(左), 90(右)],推荐旋转角绝对值不大于20度;

各角度范围示意图如下:

从姿态角度来看,这三个值的绝对值越小越好,这样代表人脸足够正视前方,最利于实际注册/识别使用。

但在实际应用场景中,由于摄像头的布设位置,往往无法拿到正对人脸的图片,主要分为以下几种情况:

  1. 监控摄像头:此类摄像头一般置于室内棚顶/室外架杆顶端,垂直向下倾斜一定角度,水平方向有一定的拍摄广度,一般PitchYaw角度变化范围较大,所以采集到的人脸往往存在大量的俯角过大、侧脸等,导致识别效果不佳。这种情况通常是调整摄像头角度(摄像头与水平面夹角减小)、调整最小检测人脸(在行人靠近摄像头时尽可能早些拿到人脸)、增加摄像头数量(不同角度互相补充,避免采集死角),实际项目实施中,还是要通过实地考察,基于现场环境一点点调节摄像头角度;
  2. 闸机/门禁:闸机方面,摄像头往往置于机器顶部,摄像头向上仰一定角度,通常低于平均成人身高,所以行人路过时,一般需要微微低头看闸机上的摄像头/屏幕,如果摆放不当,会造成采集到的人脸Pitch角度过大;门禁方面,摄像头往往置于成人身高平视高度,但多为门框侧面,如果行人朝向正门,侧面对视摄像头,如摆放不当,会造成采集的人脸Yaw角度过大。以上两种主要场景,需要基于实际场景情况动态调整安装位置,尽量避免角度过大的同时,避免用户动作不要太大。
  3. USB摄像头:线下场景中,USB摄像头常用于近场场景录入人脸(如柜台、大屏、自助柜机等),这种情况下为了拿到角度最好的图片(用户正视屏幕),在应用UI方面做一个前置页面提示,往往能最小成本地提高操作标准度。

错误码

请参考人脸识别错误码